Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 82

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2024)

Niwa, Masakazu; Shimada, Akiomi; Asamori, Koichi; Sueoka, Shigeru; Komatsu, Tetsuya; Nakajima, Toru; Ogata, Manabu; Uchida, Mao; Nishiyama, Nariaki; Tanaka, Kiriha; et al.

JAEA-Review 2024-035, 29 Pages, 2024/09

JAEA-Review-2024-035.pdf:1.24MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2024. The objectives and contents of this research are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

Journal Articles

OSL dating of marine isotope stage 5e marine terrace deposits on southeastern Kii Peninsula, southwestern Japan

Ogata, Manabu; Komatsu, Tetsuya; Nakanishi, Toshimichi*

Earth, Planets and Space (Internet), 76, p.123_1 - 123_11, 2024/09

 Times Cited Count:0 Percentile:0.00(Geosciences, Multidisciplinary)

Marine terraces developed along the southeastern coast of Kii Peninsula, southwestern Japan, face a seismogenic region along the Nankai Trough. We determined the emergence age of one of these marine terraces by using feldspar OSL dating of the marine terrace sediments. The target marine terrace has previously been correlated with MIS 5e on the basis of morphostratigraphy. Samples for pIRIR dating were obtained from foreshore deposits of the marine terrace. pIRIR signals were measured at 150 $$^{circ}$$C (pIRIR$$_{150}$$) and 225 $$^{circ}$$C (pIRIR$$_{225}$$). These results show that the surface of the marine terrace corresponds to MIS 5e rather than MIS 5c or 7, which is consistent with the chronological framework based on the morphological features of the terraces in this study area.

Journal Articles

Depositional processes of circular abandoned channels around the middle parts of the Kumano River, Southwest Japan

Nakanishi, Toshimichi*; Komatsu, Tetsuya; Ogata, Manabu; Kawamura, Makoto; Yasue, Kenichi*

Gekkan Chikyu "Kiso deta Kara Kangaeru Dai Yonkigaku No Shintenkai-I" Gogai No.71, p.148 - 155, 2022/02

The formation process of terrace topography was investigated by observing and analyzing boring core samples collected in the middle reaches of the Kumano River. It was assumed that the older terrace topography was distributed higher than the current riverbed surface. However, since tributary debris flow deposits may be thickly distributed beneath the old gyre river valley, care must be taken when using the surface of the ground as an index of uplift and erosion.

Journal Articles

Depositional age constraint on channel sediments in an incised meandering river using feldspar OSL dating; A Case study in the Totsukawa River, Kii Mountains

Ogata, Manabu; Komatsu, Tetsuya; Nakanishi, Toshimichi

Dai Yonki Kenkyu, 60(2), p.27 - 41, 2021/06

no abstracts in English

JAEA Reports

A Catalog showing distribution and features of lineaments and related landforms in an active shear zone with unclear fault displacement topography; An Example of an active left-lateral shear zone in southern Kyushu Island, southwest Japan (Contract research)

Goto, Akira; Sasaki, Akimichi*; Komatsu, Tetsuya; Miwa, Atsushi*; Terusawa, Shuji*; Kagohara, Kyoko*; Shimada, Koji

JAEA-Research 2020-013, 88 Pages, 2020/11

JAEA-Research-2020-013.pdf:22.86MB
JAEA-Research-2020-013-appendix(CD-ROM).zip:0.18MB

Improvement of the investigation techniques to identify active faults is important for the implementation of geological disposal projects from the viewpoint of avoiding locations where permeability increases due to fault displacement. Generally, the existence of active faults is confirmed by aerial photography interpretation of fault displacement topography, which is a topographical trace of fault movement, and on-site geological surveys. However, the investigation method for cases where the topographical traces are unclear is not sufficiently developed. Therefore, to improve existing topographical methods, this study deciphered lineaments up to the rank of poorly defined features, which are almost neglected in general active fault research. The investigation area is one of the geodetic strain concentration zone, called the southern Kyushu shear zone, where the seismogenic faults of the 1997 Kagoshima northwest earthquakes are concealed. We conducted aerial photography interpretation of 62 sheets of 1/25,000 topographic maps, and obtained 1,327 lineaments. Distribution density, direction and length of lineaments were also investigated with topographic and geologic information. As a result, it was clarified that the east-west lineaments in the south Kyushu shear zone predominate in the western part, and the lineaments are densely distributed in the aftershock distribution area of the Kagoshima northwest earthquake. Along with these results, we have compiled a catalog of typical 13 lineaments based on combinations of clarity, direction, length and geomorphic characters of lineaments.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2019

Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Hanamuro, Takahiro; Shimada, Akiomi; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Research 2020-011, 67 Pages, 2020/10

JAEA-Research-2020-011.pdf:3.87MB

This annual report documents the progress of research and development (R&D) in the 5th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2020)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Koji; Kokubu, Yoko; Niwa, Masakazu; Asamori, Koichi; Watanabe, Takahiro; Sueoka, Shigeru; Komatsu, Tetsuya; Yokoyama, Tatsunori; et al.

JAEA-Review 2020-010, 46 Pages, 2020/07

JAEA-Review-2020-010.pdf:1.89MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2020. The objectives and contents in fiscal year 2020 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2018

Ishimaru, Tsuneari; Ogata, Nobuhisa; Hanamuro, Takahiro; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Shimada, Koji; Watanabe, Takahiro; Saiga, Atsushi; et al.

JAEA-Research 2019-006, 66 Pages, 2019/11

JAEA-Research-2019-006.pdf:4.39MB

This annual report documents the progress of research and development (R&D) in the 4th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this report, the current status of R&D activities with previous scientific and technological progress is summarized.

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific program for fiscal year 2019)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Hanamuro, Takahiro; Shimada, Akiomi; Kokubu, Yoko; Asamori, Koichi; Niwa, Masakazu; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; et al.

JAEA-Review 2019-010, 46 Pages, 2019/09

JAEA-Review-2019-010.pdf:2.45MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2019. The objectives and contents in fiscal year 2019 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

Journal Articles

Development of evaluation method for variability of groundwater flow conditions associated with long-term topographic change and climate perturbations

Onoe, Hironori; Kosaka, Hiroshi*; Matsuoka, Toshiyuki; Komatsu, Tetsuya; Takeuchi, Ryuji; Iwatsuki, Teruki; Yasue, Kenichi

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 26(1), p.3 - 14, 2019/06

In this study, it is focused on topographic changes due to uplift and denudation, also climate perturbations, a method which is able to assess the long-term variability of groundwater flow conditions using the coefficient variation based on some steady-state groundwater flow simulation results was developed. Spatial distribution of long residence time area which is not much influenced due to long-term topographic change and recharge rate change during the past one million years was able to estimate through the case study of the Tono area, Central Japan. By applying this evaluation method, it is possible to identify the local area that has low variability of groundwater flow conditions due to topographic changes and climate perturbations from the regional area quantitatively and spatially.

JAEA Reports

Annual report for research on geosphere stability for long-term isolation of radioactive waste in fiscal year 2017

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Komatsu, Tetsuya; et al.

JAEA-Research 2018-015, 89 Pages, 2019/03

JAEA-Research-2018-015.pdf:14.43MB

This annual report documents the progress of research and development (R&D) in the 3rd fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. In this report, the current status of R&D activities with previous scientific and technological progress is summarized.

Journal Articles

Provenance identification based on EPMA analyses of heavy minerals; Case study of the Toki Sand and Gravel Formation, central Japan

Shimizu, Mayuko; Sano, Naomi; Ueki, Tadamasa; Komatsu, Tetsuya; Yasue, Kenichi*; Niwa, Masakazu

Island Arc, 28(2), p.e12295_1 - e12295_13, 2019/03

 Times Cited Count:3 Percentile:12.86(Geosciences, Multidisciplinary)

no abstracts in English

JAEA Reports

Research plan on geosphere stability for long-term isolation of radioactive waste (Scientific Program for fiscal year 2018)

Ishimaru, Tsuneari; Ogata, Nobuhisa; Shimada, Akiomi; Asamori, Koichi; Kokubu, Yoko; Niwa, Masakazu; Watanabe, Takahiro; Saiga, Atsushi; Sueoka, Shigeru; Komatsu, Tetsuya; et al.

JAEA-Review 2018-020, 46 Pages, 2019/01

JAEA-Review-2018-020.pdf:1.25MB

This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency, in fiscal year 2018. The objectives and contents in fiscal year 2018 are described in detail based on the outline of 7 years plan (fiscal years 2015-2021). Background of this research is clarified with the necessity and the significance for site investigation and safety assessment, and the past progress in this report. In addition, the plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.

Journal Articles

Chapter 8, Research and development on geological disposal technology as a field of practice in integrated physical geography

Komatsu, Tetsuya

Jissen Togo Shizen Chirigaku, p.105 - 121, 2018/07

no abstracts in English

Journal Articles

Characteristics of electron spin resonance signal of quartz from sediments and adjacent bedrocks

Tokuyasu, Kayoko; Yasue, Kenichi; Komatsu, Tetsuya; Tamura, Itoko; Horiuchi, Yasuharu

QST-M-2; QST Takasaki Annual Report 2015, P. 189, 2017/03

Understanding the stage of mountain building is crucial to the stability assessment of geological environments in geological disposal system. In this context, we have carried out the research and development of provenance analysis techniques to elucidate the mountain-building stage. Here we present the results focusing on the R&D using the Electron Spin Resonance (ESR) signals from quartz in sediments and their basement rocks.

Journal Articles

Cenozoic tectonic evolution of the Pamir; A Review

Komatsu, Tetsuya

Chigaku Zasshi, 125(5), p.661 - 698, 2016/10

The Pamir is a mountain region of the westernmost part of the Himalayan-Tibetan orogen and extends $$sim$$300 km from north to south and 300-400 km from west to east. The Pamir lies on a double subduction zone, where two buoyant continental lithospheric plates have subducted several hundred kilometers deep into the asthenosphere. The southern plate is the northward-dipping Hindu Kush slab, and the northern plate is the southward-dipping Pamir slab. This paper reviews recent studies on the Cenozoic tectonic evolution of the Pamir in this unique tectonic setting.

Oral presentation

Geosphere stability project; Summary of the development of geological-evolutionary model

Ishimaru, Tsuneari; Yasue, Kenichi*; Onoe, Hironori; Matsuoka, Toshiyuki; Komatsu, Tetsuya; Iwatsuki, Teruki; Takeuchi, Ryuji; Kato, Tomoko; Sasao, Eiji

no journal, , 

JAEA have been developing the Geological-Evolutionary Models (GEMs) taking into account of long-term change of the geological environment in order to evaluate the geosphere stability. The purpose of the GEMs is to establish modeling techniques, which can express a long-term change of the geological environments. In addition, this project has the R&D such as the methodology for verification and an uncertainty estimate of the models, and the visualization technology of the model. In this R&D, FEP (Features, Events and Processes) analysis and scenario development for geological-evolutionary modeling of mountain area and plain area have been carried out. Paleo-hydrogeological model were constructed in consideration for long-term geological environments such as topography, geology and surficial environment, and spatial distribution of long-term stability of groundwater flow.

Oral presentation

Characteristics of electron spin resonance signal of quartz from sediments and adjacent bedrocks

Nishimura, Shusaku; Yasue, Kenichi; Tokuyasu, Kayoko; Tozawa, Terumasa; Horiuchi, Yasuharu; Komatsu, Tetsuya

no journal, , 

no abstracts in English

Oral presentation

Provenance analysis techniques for understanding the stage of mountain buildings; Approaches focusing on the radiation damage of quartz

Yasue, Kenichi; Komatsu, Tetsuya; Tokuyasu, Kayoko; Tamura, Itoko; Horiuchi, Yasuharu

no journal, , 

no abstracts in English

Oral presentation

Study on provenance analysis technique using electron spin resonance method

Yasue, Kenichi; Tokuyasu, Kayoko; Komatsu, Tetsuya; Horiuchi, Yasuharu; Shimizu, Mayuko; Niwa, Masakazu

no journal, , 

no abstracts in English

82 (Records 1-20 displayed on this page)