Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 34

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Characterization of neutrons emitted by an expected small amount of fuel debris in a trial retrieval from Fukushima Daiichi Nuclear Power Station

Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*

Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Production of $$^{266}$$Bh in the $$^{248}$$Cm($$^{23}$$Na,5$$n$$)$$^{266}$$Bh reaction and its decay properties

Haba, Hiromitsu*; Fan, F.*; Kaji, Daiya*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Komori, Yukiko*; Kondo, Narumi*; Kudo, Hisaaki*; Morimoto, Koji*; Morita, Kosuke*; et al.

Physical Review C, 102(2), p.024625_1 - 024625_12, 2020/08

 Times Cited Count:7 Percentile:55.65(Physics, Nuclear)

Journal Articles

Comprehensive seismic evaluation of HTTR against the 2011 off the Pacific coast of Tohoku Earthquake

Ono, Masato; Iigaki, Kazuhiko; Sawahata, Hiroaki; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Kondo, Toshinari; Kojima, Keidai; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 4(2), p.020906_1 - 020906_8, 2018/04

On March 11th, 2011, the 2011 off the Pacific coast of Tohoku Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the High Temperature Engineering Test Reactor (HTTR) had been stopped under the periodic inspection and maintenance of equipment and instruments. A comprehensive integrity evaluation was carried out for the HTTR facility because the maximum seismic acceleration observed at the HTTR exceeded the maximum value of design basis earthquake. The concept of comprehensive integrity evaluation is divided into two parts. One is the "visual inspection of equipment and instruments". The other is the "seismic response analysis" for the building structure, equipment and instruments using the observed earthquake. All equipment and instruments related to operation were inspected in the basic inspection. The integrity of the facilities was confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the results of inspection of equipment and instruments associated with the seismic response analysis, it was judged that there was no problem for operation of the reactor, because there was no damage and performance deterioration. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015. Additionally, the integrity of control rod guide blocks was also confirmed visually when three control rod guide blocks and six replaceable reflector blocks were taken out from reactor core in order to change neutron startup sources in 2015.

Journal Articles

Investigation of countermeasure against local temperature rise in vessel cooling system in loss of core cooling test without nuclear heating

Ono, Masato; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro

Journal of Nuclear Engineering and Radiation Science, 2(4), p.044502_1 - 044502_4, 2016/10

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to verify safety evaluation codes to investigate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. The VCS passively removes the retained residual heat and the decay heat from the core via the reactor pressure vessel by natural convection and thermal radiation. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. Through a cold test, which was carried out by non-nuclear heat input from gas circulators with stopping water flow in the VCS, the local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

Journal Articles

Confirmation of seismic integrity of HTTR against 2011 Great East Japan Earthquake

Ono, Masato; Iigaki, Kazuhiko; Shimazaki, Yosuke; Shimizu, Atsushi; Inoi, Hiroyuki; Tochio, Daisuke; Hamamoto, Shimpei; Nishihara, Tetsuo; Takada, Shoji; Sawa, Kazuhiro; et al.

Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 12 Pages, 2016/06

On March 11th, 2011, the Great East Japan Earthquake of magnitude 9.0 occurred. When the great earthquake occurred, the HTTR had been stopped under the periodic inspection and maintenance of equipment and instrument. In the great earthquake, the maximum seismic acceleration observed at the HTTR exceeded the maximum value in seismic design. The visual inspection of HTTR facility was carried out for the seismic integrity conformation of HTTR. The seismic analysis was also carried out using the observed earthquake motion at HTTR site to confirm the integrity of HTTR. The concept of comprehensive integrity evaluation for the HTTR facility is divided into two parts. One is the inspection of equipment and instrument. The other is the seismic response analysis using the observed earthquake. For the basic inspections of equipment and instrument were performed for all them related to the operation of reactor. The integrity of the facilities is confirmed by comparing the inspection results or the numerical results with their evaluation criteria. As the result of inspection of equipment and instrument and seismic response analysis, it was judged that there was no problem to operate the reactor, because there was no damage and performance deterioration, which affects the reactor operation. The integrity of HTTR was also supported by the several operations without reactor power in cold conditions of HTTR in 2011, 2013 and 2015.

Journal Articles

Operational experience of CW SRF injector and main linac cryomodules at the Compact ERL

Sakai, Hiroshi*; Enami, Kazuhiro*; Furuya, Takaaki*; Kako, Eiji*; Kondo, Yoshinari*; Michizono, Shinichiro*; Miura, Takako*; Qiu, F.*; Sato, Masato*; Shinoe, Kenji*; et al.

Proceedings of 56th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs (ERL 2015) (Internet), p.63 - 66, 2015/12

no abstracts in English

Journal Articles

Experimental fast reactor "JOYO" retrieval for the bent MARICO-2 test subassembly using remote control devices

Koga, Kazuhiro*; Ohara, Norikazu*; Ino, Hiroichi*; Kondo, Katsumi*; Ito, Hideaki; Ashida, Takashi; Nakamura, Toshiyuki

FAPIG, (190), p.3 - 8, 2015/07

no abstracts in English

Journal Articles

Investigation of characteristics of natural circulation of water in vessel cooling system in loss of core cooling test without nuclear heating

Takada, Shoji; Shimizu, Atsushi; Kondo, Makoto; Shimazaki, Yosuke; Shinohara, Masanori; Seki, Tomokazu; Tochio, Daisuke; Iigaki, Kazuhiko; Nakagawa, Shigeaki; Sawa, Kazuhiro

Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 5 Pages, 2015/05

In the loss of forced core cooling test using High Temperature engineering Test Reactor (HTTR), the forced cooling of reactor core is stopped without inserting control rods into the core and cooling by Vessel Cooling System (VCS) to demonstrate the inherent safety of HTGR be secured by natural phenomena to make it possible to design a severe accident free reactor. In the test, the local temperature was supposed to exceed the limit from the viewpoint of long-term use at the uncovered water cooling tube by thermal reflectors in the VCS, although the safety of reactor is kept. The local higher temperature position was specified although the temperature was sufficiently lower than the maximum allowable working temperature, and natural circulation of water had insufficient cooling effect on the temperature of water cooling tube below 1$$^{circ}$$C. Then, a new safe and secured procedure for the loss of forced core cooling test was established, which will be carried out soon after the restart of HTTR.

Journal Articles

Measurements of electron-induced neutrons as a tool for determination of electron temperature of fast electrons in the task of optimization laser-produced plasma ions acceleration

Sakaki, Hironao; Nishiuchi, Mamiko; Maeda, Shota; Sagisaka, Akito; Pirozhkov, A. S.; Pikuz, T.; Faenov, A.*; Ogura, Koichi; Fukami, Tomoyo; Matsukawa, Kenya*; et al.

Review of Scientific Instruments, 85(2), p.02A705_1 - 02A705_4, 2014/02

 Times Cited Count:2 Percentile:10.52(Instruments & Instrumentation)

High intensity laser-plasma interaction has attracted considerable interest for a number of years. The laser-plasma interaction is accompanied by generation of various charged particle beams. Results of simultaneous novel measurements of electron-induced photonuclear neutrons (photoneutron), which are a diagnostic of the laser-plasma interaction, are proposed to use for optimization of the laser-plasma ion generation. The proposed method is demonstrated by the laser irradiation with the intensity os 1$$times$$10$$^{21}$$ W/cm$$^{2}$$ on the metal foil target. The photoneutrons are measured by using NE213 liquid scintillation detectors. Heavy-ion signal is registered with the CR39 track detector simultaneously. The measured signals of the electron-induced photoneutrons are well reproduced by using the Particle and Heavy Ion Transport code System (PHITS). The results obtained provide useful approach for analyzing the various laser based ion beams.

Journal Articles

Effect of sweep gas species on tritium release behavior from lithium titanate packed bed during 14MeV neutron irradiation

Kawamura, Yoshinori; Ochiai, Kentaro; Hoshino, Tsuyoshi; Kondo, Keitaro*; Iwai, Yasunori; Kobayashi, Kazuhiro; Nakamichi, Masaru; Konno, Chikara; Yamanishi, Toshihiko; Hayashi, Takumi; et al.

Fusion Engineering and Design, 87(7-8), p.1253 - 1257, 2012/08

 Times Cited Count:18 Percentile:76.50(Nuclear Science & Technology)

Tritium generation and recovery study on lithium ceramic packed bed was started by use of FNS in JAEA. Lithium titanate was selected as tritium breeding material. In this work, the effect of sweep gas species on tritium release behavior was investigated. In case of sweep by helium with 1% of hydrogen, tritium in water form was released sensitively corresponding to the irradiation. This is due to existence of the water vapor in the sweep gas. On the other hand, in case of sweep by dry helium, tritium in gaseous form was released first, and release of tritium in water form was delayed and was gradually increased.

Journal Articles

MeV- and sub-MeV-photon sources based on Compton backscattering at SPring-8 and KPSI-JAEA

Kawase, Keigo; Kando, Masaki; Hayakawa, Takehito; Daito, Izuru; Kondo, Shuji; Homma, Takayuki; Kameshima, Takashi; Kotaki, Hideyuki; Chen, L.*; Fukuda, Yuji; et al.

Nuclear Physics Review, 26(Suppl.), p.94 - 99, 2009/07

We constructed MeV- and sub-MeV-photon sources by means of Compton backscattering with a laser light and an electron beam at SPring-8 and KPSI-JAEA. MeV-photon source consists of a continuous-wave optically-pumped far infrared laser and an 8-GeV stored electron beam. Sub-MeV-photon source consists of a Nd:YAG pulse-laser and an 150-MeV electron beam accelerated by a microtron. Both source have been succeeded backscattered photon generation. In this talk, I will present characteristics and future prospects of these photon sources.

Journal Articles

Influence of laser irradiation condition on a femtosecond laser-assisted tomographic atom probe

Nishimura, Akihiko; Nogiwa, Kimihiro; Otobe, Tomohito; Okubo, Tadakatsu*; Hono, Kazuhiro*; Kondo, Keietsu; Yokoyama, Atsushi

Ultramicroscopy, 109(5), p.467 - 471, 2009/04

 Times Cited Count:7 Percentile:28.40(Microscopy)

Influence of femtosecond laser pulse condition on the performance of an energy compensated tomographic atom probe (ECOTAP) was investigated. Chirping ratio for laser pulses was controlled by a compressor stage. We have succeeded to get tomographic images of oxide dispersion strengthen steel, which will be used as fast breeder reactors. The ECOTAP successfully observed that the instability of the femtosecond laser pulses make the mass peaks slightly sifted or broadened to higher mass number. To investigate insulator materials, numerical simulation of conductivity increase on diamond has been successfully demonstrated.

Journal Articles

Absolute calibration of imaging plate for GeV electrons

Nakanii, Nobuhiko*; Kondo, Kiminori; Yabuuchi, Toshinori*; Tsuji, Kazuki*; Tanaka, Kazuo*; Suzuki, Shinsuke*; Asaka, Takao*; Yanagida, Kenichi*; Hanaki, Hirofumi*; Kobayashi, Takashi*; et al.

Review of Scientific Instruments, 79(6), p.166102_1 - 066102_3, 2008/06

An imaging plate has been used as a useful detector of energetic electrons in laser electron acceleration and laser fusion studies. The absolute sensitivity of an imaging plate was calibrated at 1 GeV electron energy using the injector Linac of SPring-8. The sensitivity curve obtained up to 100 MeV in a previous study was extended successfully to GeV range.

JAEA Reports

Analyses of core Shroud materials by three dimensional atom probe (Contract research)

Kondo, Keietsu; Nemoto, Yoshiyuki; Miwa, Yukio; Kaji, Yoshiyuki; Tsukada, Takashi; Nagai, Yasuyoshi*; Hasegawa, Masayuki*; Okubo, Tadakatsu*; Hono, Kazuhiro*

JAEA-Research 2006-013, 39 Pages, 2006/12

JAEA-Research-2006-013.pdf:4.57MB

There has been an increasing number of stress corrosion cracking (SCC) incidents on low carbon austenitic stainless steels used in boiling water reactor (BWR) environments. To reveal the acceleration factor of intergranular crack propagation from the viewpoint of solute distribution in stainless steels, the material extracted from a core shroud of Japanese BWR was analyzed by the three dimensional atom probe (3DAP), which has the highest spatial resolution among the various microanalytical techniques. It was revealed by statistical analysis on 3DAP data that solute elements, such as Fe, Cr, Ni, Mo, Mn, Si, are randomly distributed in matrix of the shroud material. This result means that solute was not segregated or precipitated and was not form spinodal decomposition during the service. The concentration profile in the vicinity of grain boundary obtained from 3DAP dataset showed the random distribution of Cr. This result shows that degradation of the corrosion resistance induced by depletion of Cr was not responsible for the crack propagation along grain boundaries in low carbon stainless steel. On the other hand, enrichment of Mo and Si was observed at grain boundary. The width of the enriched zone was about 2 nm across the grain boundary, and the concentration of those elements could be much higher than the concentration obtained by field emission transmission electron microscopy/energy dispersive X-ray spectroscopy (FE-TEM/EDS). Therefore, it is necessary to study about the effects of enrichment of Mo and Si as a potential contributor to SCC.

Journal Articles

Two-dimensional optical measurement of waves on liquid lithium jet simulating IFMIF target flow

Ito, Kazuhiro*; Ito, Taro*; Kukita, Yutaka*; Koterazawa, Hiroyuki*; Kondo, Hiroo*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Ida, Mizuho; Nakamura, Hideo; Nakamura, Hiroo; et al.

Proceedings of 14th International Conference on Nuclear Engineering (ICONE-14) (CD-ROM), 6 Pages, 2006/07

no abstracts in English

Journal Articles

Two-dimensional optical measurement of waves on liquid lithium jet simulating IFMIF target flow

Ito, Kazuhiro*; Ito, Taro*; Kukita, Yutaka*; Koterazawa, Hiroyuki*; Kondo, Hiroo*; Yamaoka, Nobuo*; Horiike, Hiroshi*; Ida, Mizuho; Nakamura, Hideo; Nakamura, Hiroo; et al.

Proceedings of 14th International Conference on Nuclear Engineering (ICONE-14) (CD-ROM), 6 Pages, 2006/07

Waves on a liquid-lithium jet flow, simulating a proposed high-energy beam target design, have been measured using an optical technique based on specular reflection of a single laser beam on the jet surface. The streamwise and spanwise fluctuations of the local free-surface slope were least-square fitted with a sinusoidal curve to makeup the signals lost due to the constriction in the optical arrangement. The waveform was estimated with an assumption that wave phase speed can be calculated using the dispersion relation for linear capillary gravity waves. The direction of propagation on the jet surface was also evaluated so that the wave amplitudes, calculated by integral of slope angle signal, agree consistently in streamwise and spanwise direction. These measurements and analyses show that the waves at the measurement location for a jet velocity of 1.2 m/s can best be represented by oblique waves with an inclination of 0.32 rad, a wavelength of 4.2 mm and a wave amplitude of about 0.06 mm.

JAEA Reports

Study on Thermal Electric Conversion System for Sodium cooled FBR; Investigation for development of thermoelectric materials and systematic technology

Suzuki, Ryosuke*; Tanabe, Kentaro*; Kondo, Koki*; Ono, Katsutoshi*; Toda, Shinichi; Kasagawa, Yusuke; Tamayama, Kiyoshi; Oketani, Kazuhiro*

JNC TY4400 2003-004, 214 Pages, 2003/08

JNC-TY4400-2003-004.pdf:19.93MB

Recently, it has been important to reuse discharged heat energy from present nuclear plants in the view of reduction of environmental burden and improvement of heat efficiency for plant. For practical use in future of sodium cooled FBRs, which are typical high temperature system, this issue must be given priority. The thermal electric conversion system has been applied to the limited uses such as space or military, however, that results show good merits for reliability, maintenance free, and so on. Recently, this technology has been reconsidered in the view of saving energy in general industry. In this study, we made an investigation for applicability of the thermal electric conversion system to sodium cooled FBR as a heat recovery techbnology. Exactly, We have carried out the fundamental research and development for thermoelectric materials and elements, development of modules, and sodium tests with those modules, and then, we acquired the fundamental knowledge to estimate the efficiencies of thermal electric conversion system or modules for a sodium cooled FBR.

JAEA Reports

None

Fujita, Reiko*; ; Kondo, Naruhito*; Utsunomiya, Kazuhiro*

JNC TJ8420 2000-004, 41 Pages, 2000/03

JNC-TJ8420-2000-004.pdf:5.08MB

no abstracts in English

JAEA Reports

Study on reduction of oxide uranium in lithium process

Fujita, Reiko*; Yahata, Hidetsugu*; Kondo, Naruhito*; Utsunomiya, Kazuhiro*

JNC TJ8400 2000-066, 45 Pages, 2000/03

JNC-TJ8400-2000-066.pdf:3.8MB

no abstracts in English

Oral presentation

Tritium recovery experiment with DT neutron irradiation

Ochiai, Kentaro; Kawamura, Yoshinori; Hoshino, Tsuyoshi; Kondo, Keitaro; Kobayashi, Kazuhiro; Iwai, Yasunori; Konno, Chikara

no journal, , 

no abstracts in English

34 (Records 1-20 displayed on this page)