Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Japan - IAEA Joint Nuclear Energy Management School 2016

Yamaguchi, Mika; Hidaka, Akihide; Ikuta, Yuko; Murakami, Kenta*; Tomita, Akira*; Hirose, Hiroya*; Watanebe, Masanori*; Ueda, Kinichi*; Namaizawa, Ken*; Onose, Takatoshi*; et al.

JAEA-Review 2017-002, 60 Pages, 2017/03

JAEA-Review-2017-002.pdf:9.41MB

Since 2010, IAEA has held the NEM School to develop future leaders who plan and manage nuclear energy utilization in their county. Since 2012, JAEA together with Japan Nuclear HRD Network, University of Tokyo, Japan Atomic Industrial Forum and JAIF International Cooperation Center have cohosted the school in Japan in cooperation with IAEA. Since then, the school has been held in Japan every year. In 2006, Japanese nuclear technology and experience, such as lessons learned from the Fukushima Daiichi Nuclear Power Plant accident, were provided to offer a unique opportunity for the participants to learn about particular cases in Japan. Through the school, we contributed to the internationalization of Japanese young nuclear professionals, development of nuclear human resource of other countries including nuclear newcomers, and enhanced cooperative relationship with IAEA. Additionally, collaborative relationship within the network was strengthened by organizing the school in Japan.

Journal Articles

Progress report of Japanese simulation research projects using the high-performance computer system Helios in the International Fusion Energy Research Centre

Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03

The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY 2013

Watanabe, Hitoshi; Nakano, Masanao; Fujita, Hiroki; Takeyasu, Masanori; Mizutani, Tomoko; Isozaki, Tokuju; Morisawa, Masato; Nagaoka, Mika; Hokama, Tomonori; Yokoyama, Hiroya; et al.

JAEA-Review 2014-042, 175 Pages, 2015/01

JAEA-Review-2014-042.pdf:10.89MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2013 to March 2014. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.

Journal Articles

Cabling technology of Nb$$_3$$Sn conductor for ITER central solenoid

Takahashi, Yoshikazu; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; Uno, Yasuhiro; et al.

IEEE Transactions on Applied Superconductivity, 24(3), p.4802404_1 - 4802404_4, 2014/06

 Times Cited Count:17 Percentile:26.81(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is procuring all amounts of Nb$$_3$$Sn conductors for Central Solenoid (CS) in the ITER project. Before start of mass-productions, the conductor should be tested to confirm superconducting performance in the SULTAN facility, Switzerland. The original design of cabling twist pitches is 45-85-145-250-450 mm, called normal twist pitch (NTP). The test results of the conductors with NTP was that current shearing temperature (Tcs) is decreasing due to electro-magnetic (EM) load cycles. On the other hand, the results of the conductors with short twist pitches (STP) of 25-45-80-150-450 mm show that the Tcs is stabilized during EM load cyclic tests. Because the conductors with STP have smaller void fraction, higher compaction ratio during cabling is required and possibility of damage on strands increases. The technology for the cables with STP was developed in Japanese cabling suppliers. The several key technologies will be described in this paper.

Journal Articles

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.

Nature Physics, 10(4), p.300 - 303, 2014/04

 Times Cited Count:78 Percentile:3.63(Physics, Multidisciplinary)

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY 2012

Sumiya, Shuichi; Watanabe, Hitoshi; Miyagawa, Naoto; Nakano, Masanao; Nakada, Akira; Fujita, Hiroki; Takeyasu, Masanori; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; et al.

JAEA-Review 2013-056, 181 Pages, 2014/03

JAEA-Review-2013-056.pdf:6.22MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2012 to March 2013. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Co. in March 2011.

Journal Articles

Development of advanced inductive scenarios for ITER

Luce, T. C.*; Challis, C. D.*; Ide, Shunsuke; Joffrin, E.*; Kamada, Yutaka; Politzer, P. A.*; Schweinzer, J.*; Sips, A. C. C.*; Stober, J.*; Giruzzi, G.*; et al.

Nuclear Fusion, 54(1), p.013015_1 - 013015_15, 2013/12

 Times Cited Count:20 Percentile:22.07(Physics, Fluids & Plasmas)

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY 2011

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Nagaoka, Mika; et al.

JAEA-Review 2013-009, 195 Pages, 2013/06

JAEA-Review-2013-009.pdf:3.35MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2011 to March 2012. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in March 2011.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY 2010

Sumiya, Shuichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Nakada, Akira; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2012-015, 166 Pages, 2012/05

JAEA-Review-2012-015.pdf:3.53MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2010 to March 2011. In this report, some data include the influence of the accidental release from the Fukushima Daiichi Nuclear Power Plant on Tokyo Electric Power Co. in 2011 March. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes. In addition, the data exceeded the normal range of fluctuation by the accidental release was evaluated in the appendices.

JAEA Reports

Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory Project; 2001-2010

Amano, Yuki; Yamamoto, Yoichi; Nanjo, Isao; Murakami, Hiroaki; Yokota, Hideharu; Yamazaki, Masanori; Kunimaru, Takanori; Oyama, Takahiro*; Iwatsuki, Teruki

JAEA-Data/Code 2011-023, 312 Pages, 2012/02

JAEA-Data-Code-2011-023.pdf:5.46MB
JAEA-Data-Code-2011-023(errata).pdf:0.08MB

In the Horonobe Underground Research Laboratory (URL) Project, ground water from boreholes, river water and precipitation have been analyzed for the environmental monitoring since the fiscal year 2001. This report shows the data set of water chemistry since the fiscal year 2001 to the fiscal year 2010.

Journal Articles

Experimental investigation and validation of neutral beam current drive for ITER through ITPA joint experiments

Suzuki, Takahiro; Akers, R.*; Gates, D. A.*; G$"u$nter, S.*; Heidbrink, W. W.*; Hobirk, J.*; Luce, T. C.*; Murakami, Masanori*; Park, J. M.*; Turnyanskiy, M.*; et al.

Nuclear Fusion, 51(8), p.083020_1 - 083020_8, 2011/08

 Times Cited Count:15 Percentile:37.88(Physics, Fluids & Plasmas)

Joint experiments investigating the off-axis neutral beam current drive (NBCD) capability to be utilized for advanced operation scenario development in ITER was conducted in 5 tokamaks (AUG, DIII-D, JT-60U, MAST and NSTX) through the ITPA. We discuss results obtained in the joint experiments, where the toroidal field, $$B$$$$_{rm t}$$, covered 0.3-3.7 T, the plasma current, $$I$$$$_{rm p}$$, 0.6-1.2 MA, and the beam energy, Eb, 67-350 keV. A current profile broadened by off-axis NBCD was observed in MAST. In DIII-D, good agreement between the measured and calculated NB driven current profile was observed. In JT-60U, agreement between measured and calculated NBCD location was obtained, when the NBCD location (0.3-0.6 in $$r$$/$$a$$), heating power (6-13 MW), triangularity $$d$$ (0.25-0.45), and $$E$$$$_{b}$$ (85 and 350 keV) were widely scanned. In AUG (at low $$delta$$$$ sim$$ 0.2) and DIII-D, introduction of a fast ion diffusion coefficient of $$D$$$$_{rm b}$$ 0.3-0.5 m$$^2$$/s in the calculation gave better agreement at high heating power (5 and 7.2 MW), suggesting anomalous transport of fast ions by turbulence. It was found through these ITPA joint experiments that NBCD related physics quantities reasonably agree with calculations (with $$D$$$$_{rm b}$$ = 0-0.5 m$$^2$$/s) in all devices when there is no MHD activity except ELMs. Proximity of measured off-axis beam driven current to the corresponding calculation with $$D$$$$_{rm b}$$ = 0 has been discussed for ITER in terms of a theoretically predicted scaling of fast-ion diffusion that depends on $$E$$$$_{rm b}$$/$$T$$$$_{rm e}$$ for electrostatic turbulence or $$beta$$$$_{rm t}$$ for electromagnetic turbulence.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY 2009

Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Fujita, Hiroki; Isozaki, Tokuju; Morisawa, Masato; Mizutani, Tomoko; Kokubun, Yuji; et al.

JAEA-Review 2011-004, 161 Pages, 2011/03

JAEA-Review-2011-004.pdf:4.09MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV - Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2009 to March 2010. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes.

Journal Articles

Integrated modeling of steady-state scenarios and heating and current drive mixes for ITER

Murakami, Masanori*; Park, J. M.*; Giruzzi, G.*; Garcia, J.*; Bonoli, P.*; Budny, R. V.*; Doyle, E. J.*; Fukuyama, Atsushi*; Hayashi, Nobuhiko; Honda, Mitsuru; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

On maximizing the ICRF antenna loading for ITER plasmas

Mayoral, M.-L.*; Bobkov, V.*; Colas, L.*; Goniche, M.*; Hosea, J.*; Kwak, J. G.*; Pinsker, R.*; Moriyama, Shinichi; Wukitch, S.*; Baity, F. W.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 11 Pages, 2011/03

For any given ICRF antenna design for ITER, the maximum achievable power strongly depends on the density profiles in the SOL. It has been suggested that gas injection can be used to modify the SOL profiles and thus minimize the sensitivity of the ICRF coupling to variations in the density at the edge of the confined plasma. Recently joint experiments coordinated by the ITPA were performed to characterize further this method. An increase in SOL density during gas injection led to improved coupling for all tokamaks in this multi-machine comparison. The effectiveness of using gas injection over a wide range of conditions, as a tool to tailor the edge density in front of the ICRF antennas, is documented for different gas inlet location and plasma configurations. In addition, any deleterious effects on the confinement and interaction with the antenna near-field are not investigated.

Journal Articles

Experimental investigation and validation of neutral beam current drive for ITER through ITPA joint experiments

Suzuki, Takahiro; Akers, R.*; Gates, D. A.*; G$"u$nter, S.*; Heidbrink, W. W.*; Hobirk, J.*; Luce, T. C.*; Murakami, Masanori*; Park, J. M.*; Turnyanskiy, M.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

Joint experiments investigating the off-axis neutral beam current drive (NBCD) capability to be utilized for advanced operation scenario development in ITER was conducted in 4 tokamaks (AUG, DIII-D, JT-60U and MAST) through the ITPA. We discuss results obtained in the joint experiments, where the toroidal field, Bt, covered 0.3-3.7 T, the plasma current, Ip, 0.6-1.2 MA, and the beam energy, Eb, 67-350 keV. A current profile broadened by off-axis NBCD was observed in MAST. In DIII-D, good agreement between the measured and calculated NB driven current profile was observed. In JT-60U, agreement between measured and calculated NBCD location was obtained, when the NBCD location (0.3-0.6 in r/a), heating power (6-13 MW), triangularity d (0.25-0.45), and Eb (85 and 350 keV) were widely scanned. In AUG (at low d 0.2) and DIII-D, introduction of a fast ion diffusion coefficient of Db 0.3-0.5 m$$^2$$/s in the calculation gave better agreement at high heating power (5 and 7.2 MW), suggesting anomalous transport of fast ions by turbulence. It was found through these ITPA joint experiments that NBCD related physics quantities reasonably agree with calculations (with Db=0-0.5 m$$^2$$/s) in all devices when there is no MHD activity except ELMs.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2008

Takeishi, Minoru; Sumiya, Shuichi; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Isozaki, Hisaaki*; Isozaki, Tokuju; Morisawa, Masato; Fujita, Hiroki; et al.

JAEA-Review 2009-048, 177 Pages, 2009/12

JAEA-Review-2009-048.pdf:19.3MB
JAEA-Review-2009-048(errata).pdf:0.12MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of Japan Atomic Energy Agency, Chapter IV; Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant to the atmosphere and the sea during April 2008 to March 2009. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and their trends, meteorological data and discharged radioactive wastes.

Journal Articles

Validation of on- and off-axis neutral beam current drive against experiment in DIII-D

Park, J. M.*; Murakami, Masanori*; Petty, C. C.*; Heidbrink, W. W.*; Osborne, T. H.*; Holcomb, C. T.*; Van Zeeland, M. A.*; Prater, R.*; Luce, T. C.*; Wade, M. R.*; et al.

Physics of Plasmas, 16(9), p.092508_1 - 092508_10, 2009/09

 Times Cited Count:17 Percentile:38.91(Physics, Fluids & Plasmas)

Neutral beam current drive (NBCD) experiments in DIII-D using vertically shifted plasmas to move the current drive away from the axis have clearly demonstrated robust off-axis NBCD. Time-dependent measurements of magnetic pitch angles by the motional Stark effect diagnostic are used to obtain the evolution of the poloidal magnetic flux, which indicates a broad off-axis NBCD profile with a peak at about half the plasma radius. In most cases, the measured off-axis NBCD profile is consistent with calculations using an orbit-following Monte-Carlo code for the beam ion slowing down including finite-orbit effects, provided there is no large-scale MHD activity such as Alfv$'e$n eigenmodes modes or sawteeth. Good agreement is found between the measured pitch angles and those from simulations using transport-equilibrium codes. Two-dimensional image of Doppler-shifted fast ion D$$alpha$$ light emitted by neutralized energetic ions shows clear evidence for a hollow profile of beam ion density, consistent with classical beam ion slowing down. The magnitude of off-axis NBCD is sensitive to the alignment of the beam injection relative to the helical pitch of the magnetic field lines. If the signs of B and I yield the proper helicity, both measurement and calculation indicate that the efficiency is as good as on-axis NBCD because the increased fraction of trapped electrons reduces the electron shielding of the injected ion current, in contrast with electron current drive schemes where the trapping of electrons degrades the efficiency. The measured off-axis NBCD increases approximately linearly with the injection power, although a modest amount of fast ion diffusion is needed to explain an observed difference in the NBCD profile between the measurement and the calculation at high injection power.

Journal Articles

Off-axis neutral beam current drive for advanced scenario development in DIII-D

Murakami, Masanori*; Park, J. M.*; Petty, C. C.*; Luce, T. C.*; Heidbrink, W. W.*; Osborne, T. H.*; Prater, R.*; Wade, M. R.*; Anderson, P. M.*; Austin, M. E.*; et al.

Nuclear Fusion, 49(6), p.065031_1 - 065031_8, 2009/06

 Times Cited Count:38 Percentile:15.02(Physics, Fluids & Plasmas)

Modification of the two existing DIII-D neutral beam lines is planned to allow vertical steering to provide off-axis neutral beam current drive (NBCD) peaked as far off-axis as half the plasma minor radius. New calculations for a downward-steered beam indicate strong current drive with good localization off-axis so long as the toroidal magnetic field, BT, and the plasma current, Ip, point in the same direction. This is due to good alignment of neutral beam injection (NBI) with the local pitch of the magnetic field lines. This model has been tested experimentally on DIII-D by an injecting equatorially-mounted NBs into reduced size plasmas that are vertically displaced with respect to the vessel midplane. The existence of off-axis NBCD is evident in the changes seen in sawtooth behavior in the internal inductance. By shifting the plasma upward or downward, or by changing the sign of the toroidal field, measured off-axis NBCD profiles measured with motional Stark effect data and internal loop voltage show a difference in amplitude (40%-45%) consistent with predicted differences predicted by the changed NBI alignment with respect to the helicity of the magnetic field lines. The effects of NB injection direction relative to field line helicity can be large even in ITER: off-axis NBCD can be increased by more than 20% if the BT direction is reversed. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as providing flexible scientific tools for understanding transport, energetic particles and heating and current drive.

Journal Articles

The 2008 public release of the international multi-tokamak confinement profile database

Roach, C. M.*; Walters, M.*; Budny, R. V.*; Imbeaux, F.*; Fredian, T. W.*; Greenwald, M.*; Stillerman, J. A.*; Alexander, D. A.*; Carlsson, J.*; Cary, J. R.*; et al.

Nuclear Fusion, 48(12), p.125001_1 - 125001_19, 2008/12

 Times Cited Count:31 Percentile:69.84(Physics, Fluids & Plasmas)

This paper documents the public release PR08 of the International Tokamak Physics Activity profile database, which should be of particular interest to the magnetic confinement fusion community. Data from a wide variety of interesting discharges from many of the world's leading tokamak experiments are now made available in PR08, which also includes predictive simulations of an initial set of operating scenarios for ITER. In this paper we describe the discharges that have been included and the tools that are available to the reader who is interested in accessing and working with the data.

JAEA Reports

Annual report on the environmental radiation monitoring around the Tokai Reprocessing Plant FY2007

Takeishi, Minoru; Matsuura, Kenichi; Watanabe, Hitoshi; Nakano, Masanao; Takeyasu, Masanori; Isozaki, Hisaaki; Isozaki, Tokuju; Morisawa, Masato; Fujita, Hiroki; Kokubun, Yuji; et al.

JAEA-Review 2008-057, 155 Pages, 2008/11

JAEA-Review-2008-057.pdf:2.15MB

Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed by the Nuclear Fuel Cycle Engineering Laboratories, based on "Safety Regulations for the Reprocessing Plant of JAEA, Chapter IV; Environmental Monitoring". This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged to the atmosphere and the sea during April 2007 to March 2008. Appendices present comprehensive information, such as monitoring program, monitoring methods, monitoring results and its trends, meteorological data and discharged radioactive wastes.

31 (Records 1-20 displayed on this page)