Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 108

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Performance of in situ gamma-ray spectrometry in the assessment of radioactive cesium deposition around the Fukushima Daiichi Nuclear Power Plant

Ji, Y.-Y.*; Ochi, Kotaro; Hong, S. B.*; Nakama, Shigeo; Sanada, Yukihisa; Mikami, Satoshi

Radiation Physics and Chemistry, 179, p.109205_1 - 109205_11, 2021/02

In situ gamma-ray spectrometry using diverse survey platforms has been conducted in contaminated areas with several dose rate levels around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Six survey sites, including two evacuation zones around the FDNPP, were selected for ground-based gamma-ray spectrometry using HPGe (high purity Ge) and LaBr$$_{3}$$(Ce) detectors to assess the radioactive cesium deposition in the ground. The diverse levels of radioactivity of $$^{137}$$Cs were then distributed to six survey sites from 30 to 3000 kBq m$$^{-2}$$ in the measurement period of October 2018. A method to directly calculate the depth profile using in situ measurement was introduced so as to have representation over a wide area, and the results were successfully compared with those of sample analysis at one point in the site.

JAEA Reports

Status of study of long-term assessment of transport of radioactive contaminants in the environment of Fukushima (FY2018) (Translated document)

Nagao, Fumiya; Niizato, Tadafumi; Sasaki, Yoshito; Ito, Satomi; Watanabe, Takayoshi; Dohi, Terumi; Nakanishi, Takahiro; Sakuma, Kazuyuki; Hagiwara, Hiroki; Funaki, Hironori; et al.

JAEA-Research 2020-007, 249 Pages, 2020/10

JAEA-Research-2020-007.pdf:15.83MB

The accident of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. occurred due to the Great East Japan Earthquake, Sanriku offshore earthquake, of 9.0 magnitude and the accompanying tsunami. As a result, large amount of radioactive materials was released into the environment. Under these circumstances, Japan Atomic Energy Agency (JAEA) has been conducting "Long-term Assessment of Transport of Radioactive Contaminants in the Environment of Fukushima" concerning radioactive materials released in environment, especially migration behavior of radioactive cesium since November 2012. This report is a summary of the research results that have been obtained in environmental dynamics research conducted by JAEA in Fukushima Prefecture.

Journal Articles

Temporal decrease in air dose rate in the sub-urban area affected by the Fukushima Dai-ichi Nuclear Power Plant accident during four years after decontamination works

Nakama, Shigeo; Yoshimura, Kazuya; Fujiwara, Kenso; Ishikawa, Hiroyasu; Iijima, Kazuki

Journal of Environmental Radioactivity, 208-209, p.106013_1 - 106013_8, 2019/11

 Times Cited Count:3 Percentile:42.3(Environmental Sciences)

Trends of air dose rate decrease after decontamination works and factors which affect them constitute essential information for radiation protection, such as prediction of external exposure to the public and implementation of measures to reduce such exposure. This study investigated the decrease of air dose rate (ambient dose rate at 1 m above the ground) at 163 points across sub-urban areas in the evacuation zone around the Fukushima Dai-ichi Nuclear Power Plant over the period of four years following the decontamination works carried out in November 2012. The air dose rate on the asphalt pavement decreased faster than on soil surfaces. In addition, air dose rates near the forest decreased at a slower pace than in open fields. These results suggest that the air dose rate in urbanized areas can decrease faster than in other types of land, even after decontamination. Based on comparisons with decrease rates obtained in other studies, the air dose rate tends to decrease faster outside the evacuation zone than inside it. The decrease in air dose rate after decontamination was slower than before decontamination. The contribution of the weathering effect and human activity was estimated to be about 80% and 20% of the ecological decrease rate, respectively.

Journal Articles

Applicability of autonomous unmanned helicopter survey of air dose rate in suburban area

Yoshimura, Kazuya; Fujiwara, Kenso; Nakama, Shigeo

Radiation Protection Dosimetry, 184(3-4), p.315 - 318, 2019/10

 Times Cited Count:1 Percentile:56.06(Environmental Sciences)

JAEA Reports

Status of study of long-term assessment of transport of radioactive contaminants in the environment of Fukushima (FY2018)

Nagao, Fumiya; Niizato, Tadafumi; Sasaki, Yoshito; Ito, Satomi; Watanabe, Takayoshi; Dohi, Terumi; Nakanishi, Takahiro; Sakuma, Kazuyuki; Hagiwara, Hiroki; Funaki, Hironori; et al.

JAEA-Research 2019-002, 235 Pages, 2019/08

JAEA-Research-2019-002.pdf:21.04MB

The accident of the Fukushima Daiichi Nuclear Power Station (hereinafter referred to 1F), Tokyo Electric Power Company Holdings, Inc. occurred due to the Great East Japan Earthquake, Sanriku offshore earthquake, of 9.0 magnitude and the accompanying tsunami. As a result, large amount of radioactive materials was released into the environment. Under these circumstances, JAEA has been conducting Long-term Environmental Dynamics Research concerning radioactive materials released in environment, especially migration behavior of radioactive cesium since November 2012. This report is a summary of the research results that have been obtained in environmental dynamics research conducted by JAEA in Fukushima Prefecture.

JAEA Reports

Applied research for the establishment of radiation monitoring and evaluation of exposure dose of residence at the zone designated for reconstruction and recovery

Funaki, Hironori; Takahara, Shogo; Sasaki, Miyuki; Yoshimura, Kazuya; Nakama, Shigeo; Sanada, Yukihisa

JAEA-Research 2018-016, 48 Pages, 2019/03

JAEA-Research-2018-016.pdf:29.73MB

Cabinet Office Nuclear Emergency Response Headquarters starts to consider radiation protection in the "specific reconstruction reproduction base area" of which evacuation order will be lifted by 2023. It is essential to grab the present situations of radiation contamination and evaluate exposure dose in the area to realize the plan. Many surveys have evaluated the distributions of air dose rate and exposure dose has been estimated based on the results since the Fukushima Daiichi Nuclear Power Plant accident. Nevertheless, more detailed information on exposure is needed for the areas because its radiation level is relatively high. That is also to help make prudent evaluation plan. This study aimed to evaluate the detailed contamination situation there and estimate exposure dose with considering areal circumstances. Investigations were carried out for (1) airborne survey of air dose rate using an unmanned helicopter (2) evaluation of airborne radiocesium and (3) estimation of external/internal effective doses for typical activity patterns assumed. Additionally, we applied new methods for the airborne survey to evaluate exposure dose. Our study showed a detailed three-dimensional map of air dose rate and clarified the distribution pattern in the areas. Results of effective dose estimation suggested that the internal effective dose due to inhalation accounts for less than 1% of the external effective dose.

Journal Articles

Depth profile and inventory of $$^{36}$$Cl in soil near the Fukushima Dai-ichi Nuclear Power Plant

Ota, Yuki*; Sueki, Keisuke*; Sasa, Kimikazu*; Takahashi, Tsutomu*; Matsunaka, Tetsuya*; Matsumura, Masumi*; Tosaki, Yuki*; Honda, Maki*; Hosoya, Seiji*; Takano, Kenta*; et al.

JAEA-Conf 2018-002, p.99 - 102, 2019/02

no abstracts in English

Journal Articles

Decrease in air dose rate after decontamination relating to difference in the ground surface properties

Nakama, Shigeo; Yoshimura, Kazuya; Fujiwara, Kenso; Ishikawa, Hiroyasu; Iijima, Kazuki

KEK Proceedings 2018-7, p.154 - 158, 2018/11

Decrease in air dose rate in decontaminated area is essential information to estimate external exposure and to facilitate return of local residents, but the factors to control the decrease rate have not been cleared wholly. To clarify the effect of ground surface type (i.e. paved and soil surfaces) on the decrease in air dose rate at 1 m above the ground, surface dose rate at 1 cm above the ground and the air dose rate were monitored for four years since decontamination in 2011, and their decrease rates were compared relating to the ground surface type. Decrease in the air dose rate and the surface dose rate on the asphalt pavement showed faster rates than those on the soil surface. Ratio of decrease in the air dose rate and surface dose rate (decrease rate ratio) was distributed between 0.8 and 1.2 on open place not affected by surrounding environment. Therefore, decrease in the air dose rate was in agreement with the decrease of the surface dose rate, which is greatly affected by the ground surface. It became clear that the decrease rate constant of the air dose rate differs depending on the difference in the ground surface. Furthermore, it was also confirmed that the local soil erosion and sedimentation of the ground surface does not affect the decrease rate of the air dose rate.

Journal Articles

Analysis of two forms of radioactive particles emitted during the early stages of the Fukushima Dai-ichi Nuclear Power Station accident

Satou, Yukihiko; Sueki, Keisuke*; Sasa, Kimikazu*; Yoshikawa, Hideki; Nakama, Shigeo; Minowa, Haruka*; Abe, Yoshinari*; Nakai, Izumi*; Ono, Takahiro*; Adachi, Koji*; et al.

Geochemical Journal, 52(2), p.137 - 143, 2018/00

 Times Cited Count:27 Percentile:1.88(Geochemistry & Geophysics)

JAEA Reports

Status of study of long-term assessment of transport of radioactive contaminants in the environment of Fukushima; As a part of dissemination of evidence-based information

Tsuruta, Tadahiko; Niizato, Tadafumi; Nakanishi, Takahiro; Dohi, Terumi; Nakama, Shigeo; Funaki, Hironori; Misono, Toshiharu; Oyama, Takuya; Kurikami, Hiroshi; Hayashi, Seiji*; et al.

JAEA-Review 2017-018, 86 Pages, 2017/10

JAEA-Review-2017-018.pdf:17.58MB

Since the accidents at Fukushima Daiichi Nuclear Power Plant following the Tohoku Region Pacific Coast Earthquake on March 11th, 2011, Fukushima Environmental Safety Center has carried out research on natural mobilization of radionuclide (especially radiocesium) and future forecast from forest to water system and surrounding residential areas. The report summarizes the latest results that have been accumulated from each study field, of our agency together with the other related research organizations. The contents of the report is to be used as evidence-based information for the QA-styled pages in the website of JAEA Sector of Fukushima Research and Development at the time of next renewal.

Journal Articles

Mechanical characteristics of rock segment for reducing amount of cement use and stability of drift tunnel

Tada, Hiroyuki*; Kumasaka, Hiroo*; Saito, Akira*; Nakaya, Atsushi*; Ishii, Takashi*; Fujita, Tomoo; Sugita, Yutaka; Nakama, Shigeo; Sanada, Masanori*

Doboku Gakkai Rombunshu, F2 (Chika Kukan Kenkyu) (Internet), 73(1), p.11 - 28, 2017/03

This study examined the mechanical characteristics of rock segments and backfill materials and analyzed the stability of the drift that is supported by the rock segments and gravel backfill. The results confirmed the technical aspects of the formation of the rock segments and the effectiveness of the planned efforts to further reduce the amount of cement used.

Journal Articles

Evaluation of ambient dose equivalent rates influenced by vertical and horizontal distribution of radioactive cesium in soil in Fukushima Prefecture

Malins, A.; Kurikami, Hiroshi; Nakama, Shigeo; Saito, Tatsuo; Okumura, Masahiko; Machida, Masahiko; Kitamura, Akihiro

Journal of Environmental Radioactivity, 151(Part 1), p.38 - 49, 2016/01

AA2015-0160.pdf:0.87MB

 Times Cited Count:30 Percentile:12.2(Environmental Sciences)

The air dose rate in an environment contaminated with $$^{134}$$Cs and $$^{137}$$Cs depends on the amount, depth profile and horizontal distribution of these contaminants within the ground. This paper introduces and verifies a tool that models these variables and calculates ambient dose equivalent rates at 1 m above the ground. Good correlation is found between predicted dose rates and dose rates measured with survey meters in Fukushima Prefecture in areas contaminated with radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Better predictions are obtained by modeling the horizontal distribution of radioactive cesium across an area if multiple soil samples are available, as opposed to assuming a spatially homogeneous contamination distribution. Reductions seen in air dose rates above flat, undisturbed fields in Fukushima Prefecture are consistent with decrement by radioactive decay and downward migration of cesium into soil. Analysis of remediation strategies for farmland soils confirmed that topsoil removal and interchanging a topsoil layer with a subsoil layer result in similar reductions in the air dose rate.

Journal Articles

Numerical simulations and analysis for the $"A$sp$"o$ pillar stability experiment, 1; Continuum based approaches using finite element method and comparison with other analysis model

Chijimatsu, Masakazu*; Koyama, Tomofumi*; Shimizu, Hiroyuki*; Nakama, Shigeo; Fujita, Tomoo

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.437 - 442, 2013/01

DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In Task B of DECOVALEX-2011 project, the failure mechanism during excavation, heating and destressing processes observed in the $"A$sp$"o$ pillar stability experiment (APSE), which carried out at the $"A$sp$"o$ Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company (SKB), were simulated using Finite Element Method. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters.

Journal Articles

Numerical simulations and analysis for the $"A$SP$"O$ pillar stability experiment, 2; Discontinuum based approaches using distinct element method

Shimizu, Hiroyuki*; Koyama, Tomofumi*; Chijimatsu, Masakazu*; Fujita, Tomoo; Nakama, Shigeo

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.443 - 448, 2013/01

DECOVALEX-2011 is an international cooperation project for enhancing the numerical models of radioactive waste repositories. In Task B of DECOVALEX-2011 project, the failure mechanism during excavation, heating and destressing processes observed in the $"A$sp$"o$ pillar stability experiment (APSE), which carried out at the $"A$sp$"o$ Hard Rock Laboratory by the Swedish Nuclear Fuel and Waste Management Company (SKB), were simulated using two dimensional Distinct Element Method. As a result, it is found that the simulated crack generation and propagation during the destressing process by 2D-DEM agree qualitatively well with the observation at site.

Journal Articles

Development of rock segment for reduction of amount of cement use

Tada, Hiroyuki*; Kumasaka, Hiroo*; Saito, Akira*; Nakaya, Atsushi*; Ishii, Takashi*; Sanada, Masanori; Noguchi, Akira*; Kishi, Hirokazu*; Nakama, Shigeo; Fujita, Tomoo

Dai-13-Kai Iwa No Rikigaku Kokunai Shimpojiumu Koen Rombunshu (CD-ROM), p.133 - 138, 2013/01

The authors have been developing methods for constructing tunnels using the minimum quantities of cement-type support materials in high-level radioactive waste disposal facilities and advancing research and development about the technical formation of rock segment using low alkaline mortar. In this study, the mechanical characteristic values concerning the rock segment and backfill materials were examined. The stability analysis of tunnel supported by the rock segment and backfilling with gravel were performed. Technical formation and effectiveness of the alternative supports planned for further reduction in cement influence was confirmed from a study result above-mentioned.

Journal Articles

A Long-term THMC assessment on the geochemical behavior of the bentonite buffer

Suzuki, Hideaki; Nakama, Shigeo; Fujita, Tomoo; Imai, Hisashi; Sazarashi, Masami

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 19(2), p.39 - 50, 2012/12

For the safety assessment of a geological disposal system for high-level radioactive waste, it is necessary to quantify coupled thermo-hydro-mechanical-chemical (THMC) processes in the near-field. The current study investigated the geochemical changes arising from the infiltration of groundwater into the bentonite buffer under a thermal regime of radiogenic heating arising from the vitrified waste with the computer simulated assistance of a developed THMC model. In the case of infiltration by a saline groundwater, sulfate precipitates as gypsum around the overpack in the bentonite buffer and the Na-type bentonite changes to Ca-type by exposure to Ca ions released from concrete supports. In addition, the temporal evolution of the bentonite buffer porewater composition can be obtained to assess its contribution to the corrosion of the overpack.

Journal Articles

Distinct element analysis for mechanical behavior in HLW disposal tunnel considering pre-existing cracks

Shimizu, Hiroyuki*; Koyama, Tomofumi*; Chijimatsu, Masakazu*; Fujita, Tomoo; Nakama, Shigeo

Doboku Gakkai Rombunshu, A2 (Oyo Rikigaku) (Internet), 68(2), p.I_477 - I_486, 2012/00

In this paper, the coupled thermal-mechanical processes in the $"A$sp$"o$ pillar stability experiments (APSE) were simulated using Distinct Element Method (DEM). By considering pre-existing cracks in the rock model, mechanical response of the rock during excavation phase and heating phase were successfully represented by DEM. Simulation results agree qualitatively well with the experimental results. However, the microcracks in the simulation were widely distributed around the heater and exfoliation of rock surfaces observed in the ${it in-situ}$ experiment was not formed accurately. To simulate more realistically the experimental results by the DEM models, the calibration of the microscopic parameters considering the model scale should be done. Moreover, more detailed discussion on the excavation damaged zone around the borehole and the distribution of pre-existing cracks are required.

Journal Articles

Distinct element modeling for Class II behavior of rock and hydraulic fracturing

Shimizu, Hiroyuki*; Koyama, Tomofumi*; Murata, Sumihiko*; Ishida, Tsuyoshi*; Chijimatsu, Masakazu*; Fujita, Tomoo; Nakama, Shigeo

International Journal of the JCRM (Internet), 7(1), p.33 - 36, 2011/09

In this research, newly developed numerical approaches using the Distinct Element Method (DEM) were presented, and a series of DEM simulations were performed for better understanding the physical phenomena and mechanism for the following two fundamental issues in rock engineering field. The first issue is the Class II behavior of the brittle rocks under uniaxial compression. The radial strain control method for uniaxial compression tests was introduced in the DEM codes and the Class II behavior of rocks was simulated. The simulation results suggest that the DEM can reproduce the Class II behavior of the rock successfully and revealed that the loading condition of rocks will play an important role for the Class II behavior. The second issue is the hydraulic fracturing behavior in rocks. A series of simulations for hydraulic fracturing in rock was performed by using the flow-coupled DEM code. Simulation results clearly show that the fluid infiltration behavior depends on the fluid viscosity. The fluid infiltrates into the fracture immediately, when a low viscosity fluid is used and the fluid infiltrates slowly into the cracks after the fracture generation and propagation, when a high viscosity fluid is used. Moreover, the tensile cracks are dominantly generated in the DEM simulations as expected in the conventional theory. However, the energy released from tensile cracks becomes smaller due to the fact that the tensile strength of rock is usually smaller than the compressive one. Such a small AE events is not distinguishable from noise and hard to recognize during laboratory experiments. Therefore, in AE measurements, shear type AE events with large energy are dominantly observed.

Journal Articles

Distinct element approach for the analysis of coupled thermal-mechanical processes in the near field of the HLW repository

Koyama, Tomofumi*; Shimizu, Hiroyuki*; Chijimatsu, Masakazu*; Nakama, Shigeo; Fujita, Tomoo

Proceedings of 2011 World Congress on Advances in Structural Engineering and Mechanics (ASEM '11plus) (USB Flash Drive), p.3759 - 3782, 2011/09

In this paper, the coupled thermal-mechanical processes in the $"A$sp$"o$ pillar stability experiments (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using 2 dimensional Distinct Element Method (2-D DEM) with particles. The main objective for large scale in-situ experiment is to investigate the yielding strength of crystalline rock and the formation of the excavation disturbed/damaged zone (EDZ) during excavation of two boreholes, pressurizing in one of the borehole and heating processes. For the simulations, the heat flow algorism was newly introduced into original DEM code to consider heating processes in the APSE. For the DEM simulations, one of the borehole cross sections (in 2-D) was selected and modeled as an assemblage of many particles bonded each other to investigate the failure mechanism during excavation and heating processes in detail including crack propagation at the borehole surface. The microscopic parameters used in the DEM simulations were determined by the calibration using the laboratory uniaxial/triaxial compression testing results. The calculated stress distribution, displacements and temperature distribution were compared with the ones obtained from in-situ measurements and 2-D, 3-D FEM simulations. The simulated crack propagation during the excavation, pressurizing and heating processes by DEM with particles agrees qualitatively well with the observation. The parametric study for initial microcracks was performed to reproduce the spalling phenomena observed in the APSE.

Journal Articles

Simulation of the spalling phenomena at the $"A$sp$"o$ Pillar Stability Experiment by the coupled T-H-M analysis using the damage model

Chijimatsu, Masakazu*; Koyama, Tomofumi*; Kobayashi, Akira*; Shimizu, Hiroyuki*; Nakama, Shigeo

Proceedings of 4th International Conference on Coupled T-H-M-C Processes in Geosystems: Fundamentals, Modeling, Experiments and Applications (GeoProc 2011) (CD-ROM), 13 Pages, 2011/07

The experiment was performed at the $"A$sp$"o$ Hard Rock Laboratory facility owned by the Swedish Nuclear Fuel and Waste Management Co. For the experiment an oval shape tunnel was excavated in which two large holes, $$phi$$ 1.75 m and depth 6.5 m, were excavated. The holes were placed so that a 1 m wide vertical pillar was created between them. The pillar volume was then heated to increase the tangential stress so that yielding could propagate along the borehole wall. Analysis of the coupled thermal, hydraulic and mechanical processes is carried out with the computer code named THAMES. In order to evaluate the spalling phenomena, the damage model was included in the computer code. In the damage mechanics, the change in mechanical behavior due to the growth of damage (cracks) in material is considered. The parameters of this damage model were determined by the unconfined compression test. When the parameters determined by laboratory test were used, the damage did not occur. This is because the parameters were determined from the experiment of the rock core, and it is thought that the parameter of actual bedrock is inferior to that of the rock core. Therefore, the calibration of the damage parameters was performed. When the calibrated parameters were used, simulation results agree qualitatively well with the experimental results. During the simulation of excavation, generating of damage is seen to similar to the observation by the in-situ experiment. Furthermore, temperature change during heating after the excavation of borehole also shows the good agreement between the measured and simulated results. Therefore, it can be said that the spalling phenomenon is expressible even by the application with the continuum model by the use of the suitable parameters.

108 (Records 1-20 displayed on this page)