Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nemoto, Takahiro; Fujiwara, Yusuke; Arakawa, Ryoki; Choyama, Yuya; Nagasumi, Satoru; Hasegawa, Toshinari; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; et al.
JAEA-Technology 2024-003, 17 Pages, 2024/06
In order to investigate the cause of the increase in differential pressure in the primary helium circulator filter that occurred during the RS-14 cycle, a clogged filter was investigated. As a result of the investigation, deposits caused by silicone oil were confirmed on the surface of the filter element. These results revealed that the cause of filter clogging was silicone oil mixed into the primary system due to performance deterioration of the charcoal filter in the gas circulator of primary helium purification system. As a measure to prevent the recurrence of this event, in addition to the conventional management based on operating hours for replacing of charcoal filter in the gas circulator of primary helium purification system, we have established a new replacement plan for every three years.
Hasegawa, Toshinari; Nagasumi, Satoru; Nemoto, Takahiro; Nakajima, Kunihiro; Yokoyama, Keisuke; Fujiwara, Yusuke; Arakawa, Ryoki; Iigaki, Kazuhiko; Inoi, Hiroyuki; Kawamoto, Taiki
Proceedings of 2024 International Congress on Advanced in Nuclear Power Plants (ICAPP 2024) (Internet), 10 Pages, 2024/06
The filter element of the primary gas circulators (PGC) in High Temperature engineering Test Reactor (HTTR) and its deposits were investigated by Scanning Electron Microscope (SEM) observation and Energy Dispersive X-ray spectroscopy (EDX) analysis to find the cause of the increase of the filter differential pressure during the operation in 2021. SEM observation showed that the clumpy deposits and fibrous deposits smaller than the filtration pore size and the rod-shaped deposits larger than the pore size were present on the filter element. EDX analysis showed that the clumpy deposits and fibrous deposits could include silicone oil in the primary helium purification system (PHPS) gas circulators and that the rod-shaped deposits were thermal insulators inside of the co-axial double pipes in the primary cooling system. It is considered that silicone oil leaked from the PHPS gas circulators due to deterioration in the absorption performance of the activated charcoal filter. Next, it could be vaporized and reach PGC's filter element after passing through the reactor core. Since those deposits including silicone oil were present over the entire surface of the filter element, the filter differential pressure could be increased due to a reduction in the pore size and a rise in its flow resistance. The thermal insulator was unrelated to filter clogging because it was present mainly in the lower part of the filter element. Therefore, silicone oil could increase the filter differential pressure, and the graphite powder, which is the cause of the previous issue was unrelated.
Nagai, Yuya; Shuji, Yoshiyuki; Kawasaki, Takeshi; Aita, Takahiro; Kimura, Yasuhisa; Nemoto, Yasunori*; Onuma, Takeshi*; Tomiyama, Noboru*; Hirano, Koji*; Usui, Yasuhiro*; et al.
JAEA-Technology 2022-039, 117 Pages, 2023/06
Japan Atomic Energy Agency (JAEA) manages wide range of nuclear facilities. Many of these facilities are required to be performed adjustment with the aging and complement with the new regulatory standards and the earthquake resistant, since the Great East Japan Earthquake and the Fukushima Daiichi Nuclear Power Station accident. It is therefore desirable to promote decommissioning of facilities that have reached the end of their productive life in order to reduce risk and maintenance costs. However, the progress of facility decommissioning require large amount of money and radioactive waste storage space. In order to address these issues, JAEA has formulated a "The Medium/Long-Term Management Plan of JAEA Facilities" with three pillars: (1) consolidation and prioritization of facilities, (2) assurance of facility safety, and (3) back-end countermeasures. In this plan, Plutonium Fuel Fabrication Facility has been selected as primary decommissioned facility, and dismantling of equipment in the facilities have been underway. In this report, size reduction activities of the glove box W-9 and a part of tunnel F-1, which was connected to W-9, are presented, and the obtained findings are highlighted. The glovebox W-9 had oxidation & reduction furnace, and pellet crushing machine as equipment interior. The duration of activity took six years from February 2014 to February 2020, including suspended period of 4 years due to the enhanced authorization approval process.
Nemoto, Takahiro; Arakawa, Ryoki; Kawakami, Satoru; Nagasumi, Satoru; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; Furusawa, Takayuki; Inoi, Hiroyuki; et al.
JAEA-Technology 2023-005, 33 Pages, 2023/05
During shut down of the HTTR (High Temperature engineering Test Reactor) RS-14 cycle, an increasing trend of filter differential pressure for the helium gas circulator was observed. In order to investigate this phenomenon, the blower of the primary helium purification system was disassembled and inspected. As a result, it is clear that the silicon oil mist entered into the primary coolant due to the deterioration of the charcoal filter performance. The replacement and further investigation of the filter are planning to prevent the reoccurrence of the same phenomenon in the future.
Takada, Shoji; Honda, Yuki*; Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Tochio, Daisuke; Ishii, Toshiaki; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro*
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10
Nuclear heat utilization systems connected to HTGRs will be designed on the basis of non-nuclear grade standards for easy entry of chemical plant companies, requiring reactor operations to continue even if abnormal events occur in the systems. The inventory control is considered as one of candidate methods to control reactor power for load following operation for siting close to demand area, in which the primary gas pressure is varied while keeping the reactor inlet and outlet coolant temperatures constant. Numerical investigation was carried out based on the results of nuclear heat supply fluctuation tests using HTTR by non-nuclear heating operation to focus on the temperature transient of the reactor core bottom structure by imposing stepwise fluctuation on the reactor inlet temperature under different primary gas pressures below 120C. As a result, it was emerged that the fluctuation absorption characteristics are not deteriorated by lowering pressure. It was also emerged that the reactor outlet temperature did not reach the scram level by increasing the reactor inlet temperature 10 C stepwise at 80% of the rated power as same with the full power case.
Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Takada, Shoji
Journal of Nuclear Engineering and Radiation Science, 3(4), p.041013_1 - 041013_8, 2017/10
In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.
Inaba, Yoshitomo; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Sato, Hiroyuki; Nakagawa, Shigeaki; Takada, Shoji; Sawa, Kazuhiro
Journal of Nuclear Engineering and Radiation Science, 2(4), p.041001_1 - 041001_7, 2016/10
The nuclear heat utilization systems connected to High Temperature Gas-cooled Reactors (HTGRs) will be designed on the basis of non-nuclear grade standards in terms of the easier entry of chemical plant companies and the construction economics of the systems. Therefore, it is necessary that the reactor operations can be continued even if abnormal events occur in the systems. The Japan Atomic Energy Agency has developed a calculation code to evaluate the absorption of thermal load fluctuations by the reactors when the reactor operations are continued after such events, and has improved the code based on the High Temperature engineering Test Reactor (HTTR) operating data. However, there were insufficient data on the transient temperature behavior of the metallic core side components and the graphite core support structures corresponding to the fluctuation of the reactor inlet coolant temperature for further improvement of the code. Thus, nuclear heat supply fluctuation tests with the HTTR were carried out in non-nuclear heating operation to focus on thermal effect. In the tests, the coolant helium gas temperature was heated up to 120C by the compression heat of the gas circulators in the HTTR, and a sufficiently high fluctuation of 17C by devising a new test procedure was imposed on the reactor inlet coolant under the ideal condition without the effect of the nuclear power. Then, the temperature responses of the metallic core side components and the graphite core support structures were investigated. The test results adequately showed as predicted that the temperature responses of the metallic components are faster than those of the graphite structures, and the mechanism of the thermal load fluctuation absorption by the metallic components was clarified.
Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Hamamoto, Shimpei; Iigaki, Kazuhiko; Takada, Shoji
Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06
In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15 degree C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.
Hamamoto, Shimpei; Nemoto, Takahiro; Sekita, Kenji; Saito, Kenji
JAEA-Technology 2015-048, 62 Pages, 2016/03
The decarburization may take place depending on the chemical impurity composition in helium gas used as the primary coolant in High-Temperature Gas-cooled Reactors, and will significantly reduce the strength of the alloy. The ability to remove impurities by a helium purification system was designed according to the predicted generation rate of impurities so as to make the coolant become the carburizing atmosphere. It has been confirmed that the coolant becomes the carburizing atmosphere during the operation period of the High Temperature engineering Test Reactor (HTTR). However, it is necessary to consider changes of generation rates of impurities since lifetime of commercial reactor is longer than the life of the HTTR. To avoid the influence of the change of generation rate, the control of removal efficiency of impurity in the helium purification system was considered in this study. To reform the decarburizing into the carburizing atmosphere, it is effective to increase the H and CO concentration in the coolant helium. By controlling the efficiency of the Cooper Oxide Trap (CuOT), it is possible to increase the H and CO concentrations. Therefore, an experiment was carried out by injecting the gas mixture of H and CO into the existing purification system of HTTR to investigate the dependencies of temperature and impurity concentration on the removal efficiency of CuOT. The experimental results are described as the following, (1) By adjusting the temperature of helium at the CuOT within a range from 110C to 50C, it is possible to reduce the removal efficiency of H sufficiently. (2) Temperature change of helium gas in the CuOT is sufficiently reduced by the cooler located at the downstream of the CuOT, which does not affect the primary cooling system of HTTR. As the results, the applicability of removal efficiency control of CuOT was verified to improve the decarburizing atmosphere for the actual HTGR system.
Miyao, Tomoaki*; Miura, Akihiko; Kawane, Yusuke; Tamura, Jun; Nemoto, Yasuo; Ao, Hiroyuki*; Hayashi, Naoki; Oguri, Hidetomo; Ouchi, Nobuo; Mayama, Minoru*; et al.
Proceedings of 12th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1338 - 1341, 2015/09
no abstracts in English
Nakajima, Kyo*; Teramoto, Takahiro*; Akagi, Hiroshi; Fujikawa, Takashi*; Majima, Takuya*; Minemoto, Shinichiro*; Ogawa, Kanade*; Sakai, Hirofumi*; Togashi, Tadashi*; Tono, Kensuke*; et al.
Scientific Reports (Internet), 5, p.14065_1 - 14065_11, 2015/09
Times Cited Count:38 Percentile:82.92(Multidisciplinary Sciences)We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data. In turn, we have demonstrated that this approach is a significant step toward the time-resolved imaging of molecular structures.
Takada, Shoji; Sekita, Kenji; Nemoto, Takahiro; Honda, Yuki; Tochio, Daisuke; Inaba, Yoshitomo; Sato, Hiroyuki; Nakagawa, Shigeaki; Sawa, Kazuhiro
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05
To investigate the safety design criteria of heat utilization system for the HTGRs, it is necessary to evaluate the effect of fluctuation of thermal load on the reactor. The nuclear heat supply fluctuation test by non-nuclear heating was carried out to simulate the nuclear heat supply test which is carried out in the nuclear powered operation. The test data is used to verify the numerical code to calculate the temperature of core bottom structure to carry out the safety evaluation of abnormal events in the heat utilization system. In the test, the helium gas temperature was heated up to 120C. A sufficiently high temperature disturbance was imposed on the reactor inlet temperature. It was found that the response of temperatures of metallic components such as side shielding blocks was faster than those of graphite blocks in the core bottom structure, which was significantly affected by the heat capacities of components, the level of imposed disturbance and heat transfer performance.
Nemoto, Takahiro; Kaneshiro, Noriyuki*; Sekita, Kenji; Furusawa, Takayuki; Kuroha, Misao; Kawakami, Satoru; Kondo, Masaaki
JAEA-Technology 2015-006, 36 Pages, 2015/03
The High-Temperature engineering Test Reactor (HTTR) has been developed for establishing and upgrading the technical basis of HTGR.HTTR facilities have their structures, systems and a lot of components including reciprocating gas compressors, commonly used to extract and/or discharge reactor coolant helium gas contained in primary/secondary coolant systems. From the fact of the operational experiences of these compressors, seal-oil leakage has been frequently observed, although rod-seal mechanisms with complicated structures are equipped and improved for preventing coolant helium gas. So, we tried to change the rod-seal materials which might be a primary reason of frequent seal-oil leakage, that resulted in decreasing a mass and frequently of seal-oil leakage. It is confirmed that it is important to select adequate materials of rod seal for sliding speed of the piston of the compressor to prevent seal-oil leakage. Additionally, the procedure to estimate seal-oil leakage for each compressor is discussed. This report describes the results of investigation for improvement on seal-oil leak tightness of the compressors in HTTR facilities.
Tamura, Jun; Ao, Hiroyuki; Nemoto, Yasuo; Asano, Hiroyuki*; Suzuki, Takahiro*
Journal of the Korean Physical Society, 66(3), p.399 - 404, 2015/02
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)ACSs are going to increase the beam energy of the J-PARC linac from 181 to 400 MeV. The 2011 Tohoku earthquake damaged the J-PARC facilities and the cavity conditioning was interrupted for two years. After the restoration of the facility, the two ACS cavities (M01 and M11) were conditioned. They achieved to 15-20% above the designed accelerating field of 4.2 MV/m. Since M01 was conditioned six years ago, the conditioning time required for M01 was drastically reduced from that for the first time. During the high-power operation for M11, which is an unique cavity equipped with a capacitive iris in a waveguide, no significant increase of the temperature and the discharge rate around the capacitive iris was observed. The vacuum pressure was sufficiently low (410 Pa) even from the view point of beam loss due to residual gas scattering. The more stable operation can be expected through one-month conditioning before beam commissioning.
Oguri, Hidetomo; Hasegawa, Kazuo; Ito, Takashi; Chishiro, Etsuji; Hirano, Koichiro; Morishita, Takatoshi; Shinozaki, Shinichi; Ao, Hiroyuki; Okoshi, Kiyonori; Kondo, Yasuhiro; et al.
Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.389 - 393, 2014/10
no abstracts in English
Tamura, Jun; Ao, Hiroyuki; Nemoto, Yasuo; Asano, Hiroyuki*; Suzuki, Takahiro*
Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.437 - 439, 2014/06
no abstracts in English
Hamamoto, Shimpei; Shimazaki, Yosuke; Furusawa, Takayuki; Nemoto, Takahiro; Inoi, Hiroyuki; Takada, Shoji
Nuclear Engineering and Design, 271, p.487 - 491, 2014/05
Times Cited Count:5 Percentile:35.84(Nuclear Science & Technology)The technical basis of helium gas purification control for HTGRs was established by verifying the design of the PHPS of HTTR by showing that the measured concentrations of impurities of primary helium coolant were restricted below the criteria to protect the graphite oxidation, and that the carburization atmosphere was maintained to keep intact of metallic high temperature components, in the 30-day continuous operation and the 50-day long term high temperature operation. The improved analytical model predicted the composition of the impurities such as H, CO, HO and CO, which is determined by the temperature dependency of release of impurities during the rated power operation adequately. In contrast, it was revealed that the measured concentration of HO remarkably decreased while the concentration of CO increased in the primary helium coolant in the long term high temperature operation.
Hamamoto, Shimpei; Shimazaki, Yosuke; Furusawa, Takayuki; Nemoto, Takahiro; Inoi, Hiroyuki; Takada, Shoji
Proceedings of 6th International Topical Meeting on High Temperature Reactor Technology (HTR 2012) (USB Flash Drive), 8 Pages, 2012/10
Hamamoto, Shimpei; Shimazaki, Yosuke; Furusawa, Takayuki; Nemoto, Takahiro; Inoi, Hiroyuki
Proceedings of 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE-20 & POWER 2012) (DVD-ROM), 7 Pages, 2012/07
Tomimoto, Hiroshi; Kato, Yasushi; Owada, Hiroyuki; Sato, Nao; Shimazaki, Yosuke; Kozawa, Takayuki; Shinohara, Masanori; Hamamoto, Shimpei; Tochio, Daisuke; Nojiri, Naoki; et al.
JAEA-Technology 2009-025, 29 Pages, 2009/06
The first driver fuel of the HTTR (High Temperature Engineering test Reactor) was loaded in 1998 and the HTTR reached first criticality state in the same year. The HTTR has been operated using the first driver fuel for a decade. In Fuel elements assembling, 4770 of fuel rods which consist of 12 kinds of enrichment uranium are loaded into 150 fuel graphite blocks for HTTR second driver fuel elements. Measures of prevention of fuel rod miss loading, are employed in fuel design. Additionally, precaution of fuel handling on assembling are considered. Reception of fuel rods, assembling of fuel elements and storage of second driver fuels in the fresh fuel storage rack in the HTTR were started since June, 2008. Assembling, storage and pre-service inspection were divided into three parts. The second driver fuel assembling was completed in September, 2008. This report describes concerns of fuel handling on assembling and storage work for the HTTR fuel elements.