Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 132

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool; Confirmation of fuel temperature calculation function with oxidation reaction in the SAMPSON code

Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Mechanical Engineering Journal (Internet), 7(3), p.19-00450_1 - 19-00450_17, 2020/06

In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Air oxidation models based on oxidation data obtained on the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents. The rapid fuel rod temperature rise due to the Zr air oxidation reaction could be reasonably evaluated by the SAMPSON analysis. The SFP accident analyses were conducted with different initial water levels which were no water, water level at bottom of active fuel, and water level at half of active fuel. The present analysis showed that the earliest temperature rise of the fuel rod surface occurred when there was no water in the SFP and natural circulation of air became possible.

Journal Articles

Overview of accident-tolerant fuel R&D program in Japan

Yamashita, Shinichiro; Ioka, Ikuo; Nemoto, Yoshiyuki; Kawanishi, Tomohiro; Kurata, Masaki; Kaji, Yoshiyuki; Fukahori, Tokio; Nozawa, Takashi*; Sato, Daiki*; Murakami, Nozomu*; et al.

Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.206 - 216, 2019/09

After the nuclear accident at Fukushima Daiichi Power Plant, research and development (R&D) program for establishing technical basis of accident-tolerant fuel (ATF) started from 2015 in Japan. Since then, both experimental and analytical studies necessary for designing a new light water reactor (LWR) core with ATF candidate materials are being conducted within the Japanese ATF R&D Consortium for implementing ATF to the existing LWRs, accompanying with various technological developments required. Until now, we have accumulated experimental data of the candidate materials by out-of-pile tests, developed fuel evaluation codes to apply to the ATF candidate materials, and evaluated fuel behavior simulating operational and accidental conditions by the developed codes. In this paper, the R&D progresses of the ATF candidate materials considered in Japan are reviewed based on the information available such as proceedings of international conference and academic papers, providing an overview of ATF program in Japan.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 2; Fuel cladding oxidation

Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Kanazawa, Toru*; Nakashima, Kazuo*; Tojo, Masayuki*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

Oxidation behaviour of Zr cladding in SFP accident condition was evaluated by using a thermobalance in this work, and the obtained data were applied to construct oxidation model for SFP accident condition. For the validation of the constructed oxidation model, oxidation tests using a long cladding tube 500mm in length were conducted in conditions simulating SFP accidents, such as flow rate of the atmosphere in spent fuel rack, temperature gradient along the axis of cladding, and heating-up history. Thickness of oxide layer formed on the surface of cladding samples was evaluated by cross sectional observation, and compared with calculation results obtained by using the oxidation model. The detail of experimental results and validation of the oxidation model will be discussed.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 4; Investigation of fuel loading effects in BWR spent fuel rack

Tojo, Masayuki*; Kanazawa, Toru*; Nakashima, Kazuo*; Iwamoto, Tatsuya*; Kobayashi, Kensuke*; Goto, Daisuke*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 13 Pages, 2019/05

In this study, fuel loading effects in BWR spent fuel rack accidents are widely investigated using three-dimensional analysis methods from both nuclear and thermal hydraulics viewpoints, including: (a) Decay heat of spent fuel after discharge, (b) The maximum temperature of spent fuel cladding in the spent fuel rack depending on heat transfer phenomena, and (c) Criticality of the spent fuel rack after collapsing of the fuel due to a severe accidents in the BWR spent fuel pool (SFP).

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 1; Overview

Kaji, Yoshiyuki; Nemoto, Yoshiyuki; Nagatake, Taku; Yoshida, Hiroyuki; Tojo, Masayuki*; Goto, Daisuke*; Nishimura, Satoshi*; Suzuki, Hiroaki*; Yamato, Masaaki*; Watanabe, Satoshi*

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this research program, cladding oxidation model in SFP accident condition, and numerical simulation method to evaluate capability of spray cooling system which was deployed for spent fuel cooling during SFP accident, have been developed. These were introduced into the severe accident codes such as MAAP and SAMPSON, and SFP accident analyses were conducted. Analyses using Computational Fluid Dynamics (CFD) code were conducted as well for the comparison with SA code analyses and investigation of detail in the SFP accident. In addition, three-dimensional criticality analysis method was developed as well, and safer loading pattern of spent fuels in pool was investigated.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 5; Investigation of cooling effects of SFP spray and alternate water injection with MAAP code

Nishimura, Satoshi*; Satake, Masaaki*; Nishi, Yoshihisa*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

In this study, accident progression analyses in the SFP were performed to investigate cooling effects of the SFP spray and an alternate water injection in the loss-of-pool water accident with MAAP ver. 5.05 beta. Fuel cladding oxidation model which was created by JAEA based on their experimental data was selected and applied in the present calculations. In case of an assessment of SFP spray effects, decay heat, spray fraction going into the fuel assembly, spray droplet diameter, spray start time were selected as analytical parameters. When the SFP spray of 12.5 kg/s (200 GPM) starts 4 hours after the onset of the accident against the spent fuels with 4 months cooling and if the spray fraction going into the fuel assembly is greater than 30%, the maximum cladding temperature can be maintained under 727$$^{circ}$$C (1000 K), resulting in avoiding the cladding failure.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 6; Analysis on oxidation behavior of fuel cladding tubes by the SAMPSON code

Morita, Yoshihiro*; Suzuki, Hiroaki*; Naito, Masanori*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

In this study, the SAMPSON code was modified to evaluate severe accidents in a spent fuel pool (SFP). Not only the SFP but also upper spaces of the SFP, walls of the reactor building, and the blowout panel were included. Air oxidation models obtained by the Zircaroy-4 cladding (ANL model) and the Zircaroy-2 cladding (JAEA model) were included in the modified SAMPSON code. Experiments done by Sandia National Laboratory using simulated fuel assemblies equivalent to those of an actual BWR plant were analyzed by the modified SAMPSON code to confirm the functions for analysis of the severe SFP accidents.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 7; Analysis on effectiveness of spray cooling by the SAMPSON code

Suzuki, Hiroaki*; Morita, Yoshihiro*; Naito, Masanori*; Nemoto, Yoshiyuki; Nagatake, Taku; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05

In this paper, modification of the SAMPSON code was carried out to enable the analysis of spray cooling. The SAMPSON analysis of a spray cooling experiment was performed to confirm reproducibility of spray cooling behavior of fuel claddings. The modified SAMPSON code was applied to a hypothetical loss-of-coolant accident analysis of the SFP. Effectiveness of spray cooling on cladding temperature behavior was investigated. The SAMPSON analysis showed that spraying from the top of the SFP was effective for cooling the fuel assemblies exposed to the gas phase.

Journal Articles

Study on loss-of-cooling and loss-of-coolant accidents in spent fuel pool, 8; Safety margin of spent fuel in large LOCA event by the simple assessment method

Someya, Takayuki*; Chitose, Hiromasa*; Watanabe, Satoshi*; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 9 Pages, 2019/05

In this study, CFD analysis has been conducted for the assessment of spent fuel integrity in large LOCA event and the maximum temperature of spent fuel assemblies has been evaluated. Then, it has been compared with the result of the simple assessment method. As a case study, additional CFD analysis has been conducted, where water level in SFP decreases to the Bottom of Active Fuel (BAF) due to boil-off. Since this scenario might be more severe than large LOCA scenario, the number of spent fuel assemblies, their decay heat and loading pattern to maintain spent fuel integrity are investigated.

Journal Articles

Evaluation of the effect of spent fuel layout on SFP cooling with MAAP5.04

Nishimura, Satoshi*; Satake, Masaaki*; Nishi, Yoshihisa*; Kaji, Yoshiyuki; Nemoto, Yoshiyuki

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 3 Pages, 2018/11

After the accident of Fukushima-unit 1 Nuclear Power Plant, Japanese utilities are newly requested by regulatory body to take prompt measures to enhance the safety of spent fuel pool. The most important objective of this new Japanese standards of regulation is keeping a water level in a Spent Fuel Pool (SFP) under any situations in order to prevent fuel failures due to increase of fuel temperature and to avoid the occurrence of re-criticality accidents. The utilities are considered to install several kinds of safety measures for SFP. For example, a spray injection and an alternate water injection to keep pool water level, and a spent fuel layout, such as 1 by 4, 1 by 8, checkerboard to enhance cooling of the spent fuel in SFP. The objective of the present study is to investigate the effect of spent fuel layout on SFP cooling with MAAP5.04.

Journal Articles

Study on oxidation model for Zircalloy-2 cladding in SFP accident condition

Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Onizawa, Takashi*; Kanazawa, Toru*; Nakashima, Kazuo*; Tojo, Masayuki*

Proceedings of Annual Congress of the European Federation of corrosion (EUROCORR 2018) (USB Flash Drive), 8 Pages, 2018/09

The authors proposed oxidation models based on oxidation data which previously obtained in high temperature oxidation tests on small sample of Zircalloy-2 (Zry2) cladding in dry air and in air/steam mixture environment. The oxidation models were implemented in computational fluid dynamics (CFD) code to analyse oxidation behavior of long cladding sample in hypothetical spent fuel pool (SFP) accident conditions. The oxidation tests were conducted using Zry2 cladding sample 500 mm in length. The oxide layer growth in dry air was well reproduced in the calculation using the oxidation model, meanwhile which in air/steam mixture was overestimated atmosphere composition change anticipated in the spent fuel rack during the accident, and its influence on the oxidation behaviour of the cladding were discussed in consideration of the oxidation model improvement.

Journal Articles

Influence of the air/steam mixing ratio in atmosphere on zirconium cladding oxidation in spent fuel pool accident condition

Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro*; Nakashima, Kazuo*; Tojo, Masayuki*

Proceedings of 2017 Water Reactor Fuel Performance Meeting (WRFPM 2017) (USB Flash Drive), 10 Pages, 2017/09

To cope with the hypothetical severe accident in spent fuel pools (SFPs), it is important to understand the high temperature oxidation behavior of the Zirconium claddings exposed in the air or in the atmosphere of air/steam mixture. In this study, oxidation tests on Zircaloy-2 (Zry2) and Zircaloy-4 (Zry4) short samples were conducted in the atmosphere of air - steam mixture, and mixing ratio was varied to evaluate its influence on the oxidation kinetics in the temperature range from 600 to 1100$$^{circ}$$C. From 900 to 1000$$^{circ}$$C for Zry2, and from 800 to 1000$$^{circ}$$C for Zry4, oxidation rates appeared higher in air - steam mixture than in dry air or in steam without air. This tendency was appeared more evident in post-breakaway transition phase after fracture of dense oxide layer on the surface of specimens. These results suggest importance of the oxidation model development in consideration of the air - steam mixture environment for the SFP accident analysis.

Journal Articles

Creep damage evaluations for BWR lower head in severe accident

Katsuyama, Jinya; Yamaguchi, Yoshihito; Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Osaka, Masahiko

Transactions of 24th International Conference on Structural Mechanics in Reactor Technology (SMiRT-24) (USB Flash Drive), 11 Pages, 2017/08

It is difficult to assess rupture behavior of the lower head of reactor pressure vessel in boiling-water-type nuclear power plants due to severe accident like Fukushima Daiichi because Boiling Water Reactor (BWR) lower heads have geometrically complicated structure with a lot of penetrations. Therefore, we have been developing an analysis method to predict time and location of RPV lower head rupture of BWRs considering creep damage mechanisms based on coupled analysis of three-dimensional Thermal-Hydraulics (TH) and thermal-elastic-plastic-creep analyses. In this study, we performed creep damage evaluations to investigate the effects of the debris depth and heat generation locations on failure behavior of lower head. From the analysis results, we discussed the outflow paths of the relocated molten core to the containment, and it was concluded that failure regions of BWR lower head are only the control rod guide tubes or stub tubes under simulated conditions.

Journal Articles

Investigation of Zircaloy-2 oxidation model for SFP accident analysis

Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu; Nakashima, Kazuo*; Kanazawa, Toru*; Tojo, Masayuki*

Journal of Nuclear Materials, 488, p.22 - 32, 2017/05

AA2016-0383.pdf:0.86MB

 Times Cited Count:1 Percentile:80.48(Materials Science, Multidisciplinary)

The authors previously conducted thermogravimetric analyses on zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study.

Journal Articles

Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo*; Tojo, Masayuki*

Zairyo To Kankyo, 66(5), p.180 - 187, 2017/05

In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures and different air flow rates in this work. Oxidation rate increased with temperature. In range of air flow rate predicted in spent fuel lack during SFP accident, influence of flow rate was not clearly observed below 950$$^{circ}$$C for Zry2 and below 1050$$^{circ}$$C for Zry4. Over these temperature, oxidation rates appeared obviously higher in higher air flow rate, and this trend became clearer when temperature increased. Oxide layers were carefully examined after the oxidation tests and compared with the mass gain data in TGA to investigate detail of air oxidation process. The results revealed that mass gain data in the pre breakaway transition stage reflects growth of the dense oxide film on specimen surface, and in the post breakaway transition stage, it reflects growth of porous oxide layer beneath the breakaway cracking of the oxide film.

Journal Articles

Failure evaluation analysis of reactor pressure vessel lower head in BWR due to severe accident

Kaji, Yoshiyuki; Katsuyama, Jinya; Yamaguchi, Yoshihito; Nemoto, Yoshiyuki; Osaka, Masahiko

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

To investigate the inhomogeneous temperature and stress distribution by geometrical complex of BWR lower head, the detailed 3D model of RPV lower head with control rod guide tubes and shroud supports are constructed and the 3D thermal hydraulic analysis of simulated molten pool and creep deformation analysis of lower head are performed using ANSYS Fluent / Mechanical finite element code. It is found that failure for BWR lower head might be caused by combination between melting failure in inner surface of lower head and creep failure in outer surface of lower head.

Journal Articles

Study on spray cooling capability for spent fuel pool at coolant loss accident, 1; Research plan

Liu, W.; Nagatake, Taku; Shibata, Mitsuhiko; Koizumi, Yasuo; Yoshida, Hiroyuki; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Proceedings of 10th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-10) (USB Flash Drive), 4 Pages, 2016/11

The Fukushima Daiichi NPP accident asks that the accident management of the LOCA in the SFPs must be considered to avoid occurrences of severe accident in the SFPs. To prevent the failure of the spent fuel assemblies at the LOCA, transportable spray systems are expected to be put into use to discharge water into fuel assemblies to moderate the temperature increase. To apply the spray system as a countermeasure for the LOCA of the SFP, the capability of the spray cooling system must be evaluated to keep the spent fuel rods safety. JAEA has started the research project to investigate the spray cooling capability for the SFP. In this research project, we aim to construct a numerical simulation method for evaluating the capability of the spray cooling. To develop the method, the basic key phenomena that affect the cooling performance must be clarified and the validation data required for the code development. To clarify the basic key phenomena that affect the cooling performance, that is, the CCFL and the drop size effect on the CCFL, and to obtain the code validation data, we are planning to carry out 2 experiments with two test sections, the spray visualization experiment and the spray cooling experiment. The spray visualization test section aims to get CCFL data in air-water two-phase flow and to understand the two-phase flow behavior over the upper tie plate. The spray cooling test section aims to get the CCFL data in steam-water two-phase flow and to obtain the validation data. This paper focus on the outline of the research plan for the whole research project.

Journal Articles

Visualization study on two-phase flow behavior at spray cooling for spent fuel pool

Nagatake, Taku; Liu, W.; Uesawa, Shinichiro; Koizumi, Yasuo; Shibata, Mitsuhiko; Yoshida, Hiroyuki; Nemoto, Yoshiyuki; Kaji, Yoshiyuki

Konsoryu Shimpojiumu 2016 Koen Rombunshu (USB Flash Drive), 2 Pages, 2016/08

no abstracts in English

Journal Articles

Development of failure evaluation method for BWR Lower head in severe accident; Creep damage evaluation based on thermal-hydraulics and structural analyses

Katsuyama, Jinya; Yamaguchi, Yoshihito; Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Yoshida, Hiroyuki

Mechanical Engineering Journal (Internet), 3(3), p.15-00682_1 - 15-00682_12, 2016/06

It is difficult to assess rupture behavior of the lower head of RPV in boiling water reactors (BWRs) due to severe accident like Fukushima Daiichi. This is because BWRs have geometrically complicated structure with a lot of penetrations, and BWR lower head is composed of various types of materials. We have developed an analysis method to predict time and location of BWRs lower head rupture considering creep damage mechanisms based on coupled analysis of three-dimensional thermal-hydraulics (TH) and thermal-elastic-plastic-creep analyses. The detailed three-dimensional model of RPV lower head with control rod guide tubes, stub tubes, and welds are constructed. TH analysis is performed to obtain temperature distribution in relocated debris. Using TH analysis results, structural analysis is carried out to evaluate creep damage distributions using damage criterions. Creep damage evaluation models based on Kachanov and LMP criteria are made. From comparison of damage criterions, it is shown that failure regions of BWR lower head are only penetrations under simulated conditions, although there is a large difference in failure time.

Journal Articles

Study on magnetic property change on neutron irradiated austenitic stainless steel

Nemoto, Yoshiyuki; Oishi, Makoto; Ito, Masayasu; Kaji, Yoshiyuki; Keyakida, Satoshi*

Hozengaku, 14(4), p.83 - 90, 2016/01

Authors previously reported that magnetic data obtained by using Eddy current method and AC magnetization method showed correlation with the increase of susceptibility of the irradiation assisted stress corrosion cracking (IASCC) on neutron irradiated austenitic stainless alloy specimens. To discuss the mechanism of the correlation, microstructure observation was conducted on the irradiated specimen, and magnetic permalloy phase (FeNi$$_{3}$$) formation along grain boundary was revealed in this work. From this result, the radiation induced magnetic phase formation along grain boundary seems to be a factor of the magnetic property change of the irradiated materials, and related to the correlation between magnetic data and IASCC susceptibility. In addition, sensor probe development was conducted in this work to obtain higher sensitivity and resolution. It was applied for magnetic measurement on type304 stainless steel irradiated up to different doses. In this case, magnetic ferrite phase was existed in the type304 stainless steel sample before irradiation therefore it was concerned that magnetic measurement on the irradiated ones would be disturbed by the magnetic signal from the pre-existing ferrite phase. In the magnetic measurements, increase of the magnetic data was clearly seen on the irradiated specimens. Thus, it was thought that the developed magnetic measurement technics can be applied for the irradiated austenite stainless steels which contain certain quantity of ferrite phase before irradiation.

132 (Records 1-20 displayed on this page)