Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ikeuchi, Hirotomo; Sasaki, Shinji; Onishi, Takashi; Nakayoshi, Akira; Arai, Yoichi; Sato, Takumi; Ohgi, Hiroshi; Sekio, Yoshihiro; Yamaguchi, Yukako; Morishita, Kazuki; et al.
JAEA-Data/Code 2023-005, 418 Pages, 2023/12
For safe and steady decommissioning of Tokyo Electric Power Company Holdings' Fukushima Daiichi Nuclear Power Station (1F), information concerning composition and physical/chemical properties of fuel debris generated in the reactors should be estimated and provided to other projects conducting the decommissioning work including the retrieval of fuel debris and the subsequent storage. For this purpose, in FY2021, samples of contaminants (the wiped smear samples and the deposits) obtained through the internal investigation of the 1F Unit 2 were analyzed to clarify the components and to characterize the micro-particles containing uranium originated from fuel (U-bearing particles) in detail. This report summarized the results of analyses performed in FY2021, including the microscopic analysis by SEM and TEM, radiation analysis, and elemental analysis by ICP-MS, as a database for evaluating the main features of each sample and the probable formation mechanism of the U-bearing particles.
Shibata, Motoki*; Nakanishi, Yohei*; Abe, Jun*; Arima, Hiroshi*; Iwase, Hiroki*; Shibayama, Mitsuhiro*; Motokawa, Ryuhei; Kumada, Takayuki; Takata, Shinichi; Yamamoto, Katsuhiro*; et al.
Polymer Journal, 55(11), p.1165 - 1170, 2023/11
Times Cited Count:2 Percentile:35.88(Polymer Science)Sakuma, Kazuyuki; Yamada, Susumu; Machida, Masahiko; Kurikami, Hiroshi; Misono, Toshiharu; Nakanishi, Takahiro; Iijima, Kazuki
Marine Pollution Bulletin, 192, p.115054_1 - 115054_10, 2023/07
Times Cited Count:2 Percentile:31.80(Environmental Sciences)Koizumi, Mitsuo; Takahashi, Tone; Hironaka, Kota; Mochimaru, Takanori*; Yamaguchi, Ikuto*; Kimura, Yoshiki; Tanigaki, Minoru*; Masaki, Hiroko*; Harada, Hiroshi*; Goto, Jun*; et al.
Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 7 Pages, 2023/05
Kamiya, Tomohiro; Ono, Ayako; Tada, Kenichi; Akie, Hiroshi; Nagaya, Yasunobu; Yoshida, Hiroyuki; Kawanishi, Tomohiro
Proceedings of 29th International Conference on Nuclear Engineering (ICONE 29) (Internet), 8 Pages, 2022/11
JAEA started to develop the advanced reactor analysis code JAMPAN (JAEA advanced multi-physics analysis platform for nuclear systems). The current version of JAMPAN handles the continuous energy Monte Carlo code MVP and the detailed thermal-hydraulics analysis code for multiphase and multicomponent JUPITER. JAMPAN is designed to consider the extensibility and it does not depend on the analysis codes. All calculations in JAMAPAN are not directly connected. JAMPAN has data containers, and all input and output data of each analysis code are set in these data containers. JAMPAN will easily exchange the calculation codes and add the other calculations, e.g., structure calculation and irradiation calculation since the input and the output format of each code has no impact on the other calculation codes. The 4 by 4 pin-cell geometry was used as the demonstration calculation of JAMPAN and the physically reasonable calculation results were obtained.
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Arima-Osonoi, Hiroshi*; Nakanishi, Yohei*; Takenaka, Mikihito*; Shibata, Motoki*; Yamada, Norifumi*; Seto, Hideki*; Aoki, Hiroyuki; et al.
Langmuir, 38(41), p.12457 - 12465, 2022/10
Times Cited Count:2 Percentile:18.86(Chemistry, Multidisciplinary)Ohshima, Hiroyuki; Morishita, Masaki*; Aizawa, Kosuke; Ando, Masanori; Ashida, Takashi; Chikazawa, Yoshitaka; Doda, Norihiro; Enuma, Yasuhiro; Ezure, Toshiki; Fukano, Yoshitaka; et al.
Sodium-cooled Fast Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.3, 631 Pages, 2022/07
This book is a collection of the past experience of design, construction, and operation of two reactors, the latest knowledge and technology for SFR designs, and the future prospects of SFR development in Japan. It is intended to provide the perspective and the relevant knowledge to enable readers to become more familiar with SFR technology.
Yamamoto, Naoki*; Nakanishi, Masahiro*; Rajan, R.*; Nakagawa, Hiroshi
Biophysics and Physicobiology (Internet), 18, p.284 - 288, 2021/12
Water is an indispensable solvent for living things. 60% of our body is composed of water, the lack of which causes lots of fatal problems. It has also been known that protein function is performed only when it accompanies water molecules around the surface, i.e. hydration water molecules. Therefore, it is essential to understand how water and biological component interact with each other in the view point of structure and dynamics. Freezing is a fundamental and simple phenomenon of water, and thus can be used as a probe for the purpose. Furthermore, preservation of cells and proteins under low temperature is crucial for numerous applications, which in turn triggers a myriad of undesirable consequences because of the freezing.
Asakura, Kazuki; Shimomura, Yusuke; Donomae, Yasushi; Abe, Kazuyuki; Kitamura, Ryoichi; Miyakoshi, Hiroyuki; Takamatsu, Misao; Sakamoto, Naoki; Isozaki, Ryosuke; Onishi, Takashi; et al.
JAEA-Review 2021-020, 42 Pages, 2021/10
The disposal of radioactive waste from the research facility need to calculate from the radioactivity concentration that based on variously nuclear fuels and materials. In Japan Atomic Energy Agency Oarai Research and Development Institute, the study on considering disposal is being advanced among the facilities which generate radioactive waste as well as the facilities which process radioactive waste. This report summarizes a study result in FY2020 about the evaluation method to determine the radioactivity concentration in radioactive waste on Oarai Research and Development Institute.
Nagao, Fumiya; Niizato, Tadafumi; Sasaki, Yoshito; Ito, Satomi; Watanabe, Takayoshi; Dohi, Terumi; Nakanishi, Takahiro; Sakuma, Kazuyuki; Hagiwara, Hiroki; Funaki, Hironori; et al.
JAEA-Research 2020-007, 249 Pages, 2020/10
The accident of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. occurred due to the Great East Japan Earthquake, Sanriku offshore earthquake, of 9.0 magnitude and the accompanying tsunami. As a result, large amount of radioactive materials was released into the environment. Under these circumstances, Japan Atomic Energy Agency (JAEA) has been conducting "Long-term Assessment of Transport of Radioactive Contaminants in the Environment of Fukushima" concerning radioactive materials released in environment, especially migration behavior of radioactive cesium since November 2012. This report is a summary of the research results that have been obtained in environmental dynamics research conducted by JAEA in Fukushima Prefecture.
Tanaka, Kosuke; Sato, Isamu*; Onishi, Takashi; Ishikawa, Takashi; Hirosawa, Takashi; Katsuyama, Kozo; Seino, Hiroshi; Ohno, Shuji; Hamada, Hirotsugu; Tokoro, Daishiro*; et al.
Journal of Nuclear Materials, 536, p.152119_1 - 152119_8, 2020/08
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)In order to obtain the release rate coefficients from fuels for fast reactors (FRs), heating tests and the subsequent analyses of the fission products (FPs) and actinides that are released were carried out using samples of uranium-plutonium mixed oxide (MOX) fuel pellets irradiated at the experimental fast reactor Joyo. Three heating tests targeting temperatures of 2773, 2973 and 3173 K were conducted using an FP release behavior test apparatus equipped with a high-frequency induction furnace and solid FP sampling systems consisting of a thermal gradient tube (TGT) and filters. Irradiated fuel pellets were placed into a tungsten crucible, then loaded into the induction furnace. The temperature was raised continuously at a heating rate of 10 K/s to the targeted temperature and maintained for 500 s in a flowing argon gas atmosphere. The FPs and actinides released from the MOX fuels and deposited in the TGT and filters were quantified by gamma-ray spectrometry and inductively coupled plasma mass spectrometry (ICP-MS) analysis. Based on the analysis, the release rates of radionuclides from MOX fuels for FR were obtained and compared with literature data for light water reactor (LWR) fuels. The release rate coefficients of FPs obtained in this study were found to be similar to or lower than the literature values for LWR fuels. It was also found that the release rate coefficient data for actinides were within the range of variation of literature values for LWR fuels.
Sakuma, Kazuyuki; Nakanishi, Takahiro; Yoshimura, Kazuya; Kurikami, Hiroshi; Namba, Kenji*; Zheleznyak, M.*
Journal of Environmental Radioactivity, 208-209, p.106041_1 - 106041_12, 2019/11
Times Cited Count:24 Percentile:67.32(Environmental Sciences)We developed a simple model to evaluate and predict Cs discharge from catchment using tank model and L-Q equation. Using this model, Cs discharge and discharge ratio from Abukuma River and 13 other rivers in Fukushima coastal region were estimated from immediately after Fukushima accident to 2017. Cesium-137 discharge ratio to the deposition amount in catchment through Abukuma River and 13 other rivers in Fukushima coastal region during about initial six months were estimated to be 18 TBq (3.1%) and 11 TBq (0.8%), respectively. These values were 1-2 orders of magnitude larger than the previous study observed after June 2011, indicating that initial Cs discharge from catchment through rivers was a significant. However it was founded that an impact on the ocean derived from initial Cs discharge through river can be limited because Cs discharge from Abukuma River and 13 other rivers in Fukushima coastal region (29 TBq) was two orders of magnitude smaller than the direct release from FDNPP into the ocean (3.5 PBq) and from atmospheric deposition into the ocean (7.6 PBq).
Nagao, Fumiya; Niizato, Tadafumi; Sasaki, Yoshito; Ito, Satomi; Watanabe, Takayoshi; Dohi, Terumi; Nakanishi, Takahiro; Sakuma, Kazuyuki; Hagiwara, Hiroki; Funaki, Hironori; et al.
JAEA-Research 2019-002, 235 Pages, 2019/08
The accident of the Fukushima Daiichi Nuclear Power Station (hereinafter referred to 1F), Tokyo Electric Power Company Holdings, Inc. occurred due to the Great East Japan Earthquake, Sanriku offshore earthquake, of 9.0 magnitude and the accompanying tsunami. As a result, large amount of radioactive materials was released into the environment. Under these circumstances, JAEA has been conducting Long-term Environmental Dynamics Research concerning radioactive materials released in environment, especially migration behavior of radioactive cesium since November 2012. This report is a summary of the research results that have been obtained in environmental dynamics research conducted by JAEA in Fukushima Prefecture.
Watanabe, Tamaki*; Toyama, Takeshi*; Hanamura, Kotoku*; Imao, Hiroshi*; Kamigaito, Osamu*; Kamoshida, Atsushi*; Kawachi, Toshihiko*; Koyama, Ryo*; Sakamoto, Naruhiko*; Fukunishi, Nobuhisa*; et al.
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1105 - 1108, 2019/07
Upgrades for the RIKEN heavy-ion linac (RILAC) involving a new superconducting linac (SRILAC) are currently underway at the RIKEN radioactive isotope beam factory (RIBF). It is crucially important to develop nondestructive beam measurement diagnostics. We have developed a beam energy position monitor (BEPM) system which can measure not only the beam position but also the beam energy simultaneously by measuring the time of flight of the beam. We fabricated 11 BEPMs and completed the position calibration to obtain the sensitivity and offset for each BEPMs. The position accuracy has been achieved to be less than 0.1 mm by using the mapping measurement.
Nakanishi, Hiroaki; Kimura, Takashi; Shimizu, Ryo; Kitade, Yuta; Tazaki, Makiko; Tamai, Hiroshi; Suda, Kazunori
Nihon Kaku Busshitsu Kanri Gakkai Dai-39-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2018/11
To extract the possible requirements for the Broader Conclusion (BC) drawn by the IAEA in the Member States, this study is to conduct the comparative analysis of the tendencies on the Member States from which the BC has been drawn and those from which the BC has not been drawn yet.
Tazaki, Makiko; Tamai, Hiroshi; Shimizu, Ryo; Kimura, Takashi; Kitade, Yuta; Nakanishi, Hiroaki; Suda, Kazunori
Nihon Kaku Busshitsu Kanri Gakkai Dai-39-Kai Nenji Taikai Rombunshu (Internet), 7 Pages, 2018/11
no abstracts in English
Kimura, Takashi; Tazaki, Makiko; Kitade, Yuta; Shimizu, Ryo; Tamai, Hiroshi; Nakanishi, Hiroaki; Suda, Kazunori
Nihon Kaku Busshitsu Kanri Gakkai Dai-39-Kai Nenji Taikai Rombunshu (Internet), 5 Pages, 2018/11
This is the summary of research result of State Level Concept (SLC) which has been developed and conducted by the IAEA and a major purpose of the research reported here is to promote the nuclear operator's understandings for the importance of Broder Conclusion drawn continuously by the IAEA under SLC.
Kitade, Yuta; Tamai, Hiroshi; Tazaki, Makiko; Shimizu, Ryo; Kimura, Takashi; Nakanishi, Hiroaki; Suda, Kazunori
Nihon Kaku Busshitsu Kanri Gakkai Dai-39-Kai Nenji Taikai Rombunshu (Internet), 9 Pages, 2018/11
Regional Safeguards is considered as one of the measures for strengthening IAEA safeguards and its concept is recognized at NPT Review Conference and also NSG Guidelines amended in 2011. This Study examines the elements for the proper establishment of Regional Safeguards.
Watanabe, Tamaki*; Imao, Hiroshi*; Kamigaito, Osamu*; Sakamoto, Naruhiko*; Fukunishi, Nobuhisa*; Fujimaki, Masaki*; Yamada, Kazunari*; Watanabe, Yutaka*; Koyama, Ryo*; Toyama, Takeshi*; et al.
Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.49 - 54, 2018/08
no abstracts in English
Sakuma, Kazuyuki; Malins, A.; Funaki, Hironori; Kurikami, Hiroshi; Niizato, Tadafumi; Nakanishi, Takahiro; Mori, Koji*; Tada, Kazuhiro*; Kobayashi, Takamaru*; Kitamura, Akihiro; et al.
Journal of Environmental Radioactivity, 182, p.44 - 51, 2018/02
Times Cited Count:12 Percentile:34.53(Environmental Sciences)The Oginosawa River catchment lies 15 km south-west of the Fukushima Dai-ichi nuclear plant. The General-purpose Terrestrial Fluid-flow Simulator (GETFLOWS) code was used to study sediment and Cs redistribution within the catchment. Cesium-137 input to watercourses came predominantly from land adjacent to river channels and forest gullies. Forested areas far from the channels only made a minor contribution to Cs input to watercourses, total erosion of between 0.001-0.1 mm from May 2011 to December 2015. The 2.3-6.9% y decrease in the amount of Cs in forest topsoil over the study period can be explained by radioactive decay (approximately 2.3% y), along with a migration downwards into subsoil and a small amount of export. The amount of Cs available for release from land adjacent to rivers is expected to be lower in future than compared to this study period, as the simulations indicate a high depletion of inventory from these areas.