Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

New precise measurement of muonium hyperfine structure interval at J-PARC

Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11

 Times Cited Count:3 Percentile:86.37(Physics, Atomic, Molecular & Chemical)

Journal Articles

New muonium HFS measurements at J-PARC/MUSE

Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.

Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12

 Times Cited Count:7 Percentile:90.88(Physics, Atomic, Molecular & Chemical)

Journal Articles

Investigation of segregation during oxidation of Ni-Cu alloy by ${{it in situ}}$ photoelectron spectroscopy

Doi, Takashi*; Nishiyama, Yoshitaka*; Yoshigoe, Akitaka; Teraoka, Yuden

Surface and Interface Analysis, 48(7), p.685 - 688, 2016/07

 Times Cited Count:5 Percentile:12.02(Chemistry, Physical)

Ni-based alloys has been widely used for plant application because of their high strength and excellent oxidation resistance. In particular, the addition of Cu in Ni-based alloys significantly improves the metal dusting resistance. It is indicated that Cu is segregated on the alloy surface in the metal dusting environment; however, the details have not been clarified yet. The behavior of Ni-2Cu alloy under a high temperature oxidation environment was investigated using ${{it in situ}}$ X-ray photoelectron spectroscopy. It was confirmed that Cu have been segregated at the surface of Ni-2Cu alloy during oxidation. These results propose that the Cu segregation improves the metal dusting resistance.

Journal Articles

Dismantlement of large fusion experimental device JT-60U

Ikeda, Yoshitaka; Okano, Fuminori; Sakasai, Akira; Hanada, Masaya; Akino, Noboru; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; Kubo, Hirotaka; Kobayashi, Kazuhiro; et al.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 13(4), p.167 - 178, 2014/12

The JT-60U torus was disassembled so as to newly install the superconducting tokamak JT-60SA torus. The JT-60U used the deuterium for 18 years, so the disassembly project of the JT-60U was the first disassembly experience of a fusion device with radioactivation in Japan. All disassembly components were stored with recording the data such as dose rate, weight and kind of material, so as to apply the clearance level regulation in future. The lessons learned from the disassembly project indicated that the cutting technologies and storage management of disassembly components were the key factors to conduct the disassembly project in an efficient way. After completing the disassembly project, efforts have been made to analyze the data for characterizing disassembly activities, so as to contribute the estimation of manpower needs and the radioactivation of the disassembly components on other fusion devices.

Journal Articles

Safe disassembly and storage of radioactive components of JT-60U torus

Ikeda, Yoshitaka; Okano, Fuminori; Hanada, Masaya; Sakasai, Akira; Kubo, Hirotaka; Akino, Noboru; Chiba, Shinichi; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; et al.

Fusion Engineering and Design, 89(9-10), p.2018 - 2023, 2014/10

 Times Cited Count:2 Percentile:16.31(Nuclear Science & Technology)

Disassembly of the JT-60U torus was started in 2009 after 18-years D$$_{2}$$ operations, and was completed in October 2012. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to D-D reactions. Since this work is the first experience of disassembling a large radioactive fusion device in Japan, careful disassembly activities have been made. About 13,000 components cut into pieces with measuring the dose rates were removed from the torus hall and stored safely in storage facilities by using a total wokers of 41,000 person-days during 3 years. The total weight of the disassembly components reached up to 5,400 tons. Most of the disassembly components will be treated as non-radioactive ones after the clearance verification under the Japanese regulation in future. The assembly of JT-60SA has started in January 2013 after this disassembly of JT-60U torus.

Journal Articles

Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels

Takeuchi, Tomoaki; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Nishiyama, Yutaka; Katsuyama, Jinya; Yamaguchi, Yoshihito; Onizawa, Kunio; et al.

Journal of Nuclear Materials, 452(1-3), p.235 - 240, 2014/09

 Times Cited Count:40 Percentile:94.94(Materials Science, Multidisciplinary)

Microstructures and hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to the thermal aging at 400 $$^{circ}$$C for 100-10,000 h were investigated using atom probe tomography and nanoindentation technique. The Cr concentration fluctuation in the $$delta$$-ferrite phase caused by spinodal decomposition rapidly progressed by the 100 h aging while NiSiMn clusters increased in number density at 2,000 h and coarsened at 10,000 h. The hardness of the $$delta$$-ferrite phase also rapidly increased at the short aging time. The Cr concentration fluctuation and the hardness were in good correlation with the degree of the Cr concentration fluctuation rather than the formation of the NiSiMn clusters. These results strongly suggested that the dominant factor of the hardening of the $$delta$$-ferrite phase by the thermal aging was Cr spinodal decomposition.

Journal Articles

Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels

Takeuchi, Tomoaki; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Nishiyama, Yutaka; Katsuyama, Jinya; Yamaguchi, Yoshihito; Onizawa, Kunio

Journal of Nuclear Materials, 449(1-3), p.273 - 276, 2014/06

 Times Cited Count:20 Percentile:82.53(Materials Science, Multidisciplinary)

Microstructural changes and hardness of stainless steel weld overlay cladding of reactor pressure vessels subjected to the neutron irradiation with a dose of 7.2 $$times$$ 10$$^{19}$$n cm$$^{-2}$$ (E $$>$$ 1 MeV) and a flux of 1.1 $$times$$ 10$$^{13}$$n cm$$^{-2}$$ s$$^{-1}$$ at 290$$^{circ}$$C were investigated by atom probe tomography and with nanoindentation technique. In order to isolate the effect of the irradiation, we compared the results of the measurements of the irradiated sample with that of the aged one at 300$$^{circ}$$C for the time equivalent to the irradiation. The Cr concentration fluctuation was enhanced in the $$delta$$-ferrite phase of the irradiated sample. In addition, the enhancement of the concentration fluctuation of Si, which was not observed in the aged sample, was observed. The hardening at the $$delta$$-ferrite phase was occurred by both the irradiation and the aging. However, the former was more than that expected from the Cr concentration fluctuation, which suggested that the Si concentration fluctuation and irradiation-induced defects were possible origins of the additional hardening.

JAEA Reports

Storage management of disassembled and radioactive components of JT-60 tokamak device; Storage of radioactive components by containers

Nishiyama, Tomokazu; Miyo, Yasuhiko; Okano, Fuminori; Sasajima, Tadayuki; Ichige, Hisashi; Kaminaga, Atsushi; Miya, Naoyuki; Sukegawa, Atsuhiko; Ikeda, Yoshitaka; Sakasai, Akira

JAEA-Technology 2014-006, 30 Pages, 2014/03

JAEA-Technology-2014-006.pdf:4.87MB

JT-60 tokamak device and the peripheral equipment were disassembled so as to be upgraded to the superconducting tokamak JT-60SA. The disassembled components were stored into storage and airtight containers at the radioactive control area. The total weight and the total number of those components are about 1,100 tons and about 11,500 except for large components. Radiation measurements and records of the radioactive components were required one by one under the law of Act on Prevention of Radiation Disease Due to Radioisotopes, etc. for the control of transport and storage from the radioactive control area to the other area. The storage management of the radioactive components was implemented by establishing the work procedure and the component management system by barcode tags. The radioactive components as many as 11,500 were surely and effectively stored under the law. The report gives the outline of the storage of JT-60 radioactive components by the storage containers.

JAEA Reports

Disassembly of JT-60 tokamak device and ancillary facilities for JT-60 tokamak

Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Junichi; Ishige, Yoichi; Suzuki, Hiroaki; Komuro, Kenichi; et al.

JAEA-Technology 2014-003, 125 Pages, 2014/03

JAEA-Technology-2014-003.pdf:13.32MB

The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the wielded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device.

JAEA Reports

Disassembly of JT-60 tokamak device

Okano, Fuminori; Ikeda, Yoshitaka; Sakasai, Akira; Hanada, Masaya; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Junichi; et al.

JAEA-Technology 2013-031, 42 Pages, 2013/11

JAEA-Technology-2013-031.pdf:18.1MB

The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 6200 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the wielded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device.

Journal Articles

Effect of neutron irradiation on the microstructure of the stainless steel electroslag weld overlay cladding of nuclear reactor pressure vessels

Takeuchi, Tomoaki; Kakubo, Yuta*; Matsukawa, Yoshitaka*; Nozawa, Yasuko*; Nagai, Yasuyoshi*; Nishiyama, Yutaka; Katsuyama, Jinya; Onizawa, Kunio; Suzuki, Masahide

Journal of Nuclear Materials, 443(1-3), p.266 - 273, 2013/11

 Times Cited Count:16 Percentile:76.22(Materials Science, Multidisciplinary)

Investigation on irradiation effects of weld-overlay claddings is necessary for safety assessment of reactor pressure vessels. We investigated microstructural changes in the cladding, which was composed of about 90% austenite and 10% $$delta$$-ferrite phases, subjected to the neutron irradiation to 7.2$$times$$10$$^{19}$$ n/cm$$^{2}$$ at 290$$^{circ}$$C, by 3D atom probe tomography technique. In the ferrite phase, the amplitude of the Cr and Si concentration fluctuation was increased by the irradiation and Ni and Mn concentration fluctuations were newly occurred. In the austenite phase, $$gamma$$'(Ni$$_{3}$$Si) -like clusters were formed. In contrast, the results of our previous work on the cladding subjected to thermal aging showed the amplitude of the Cr fluctuation was significantly increased and G (Ni-Si-Mn) phase was formed in the ferrite phase. Moreover, no changes were observed in the austenite by the aging.

Journal Articles

Conceptual design study for the demonstration reactor of JSFR, 6; Fuel handling system design

Chikazawa, Yoshitaka; Kato, Atsushi; Obata, Hiroyuki*; Nishiyama, Noboru; Uzawa, Masayuki*; Tozawa, Katsuhiro*; Chishiro, Ryo*

Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19) (CD-ROM), 7 Pages, 2011/10

A preliminary design of the JSFR fuel handling system has been proposed. FaCT phase I results of key technology evaluations on preliminary safety assessment, a pantograph fuel handling machine, a sodium pot with two core component positions, dry spent fuel cleaning and minor actinide-bearing fresh fuel shipping cask are provided.

Oral presentation

Transmission electron microscopy crystal structure analysis of G-phase precipitates in an overlay-clad duplex stainless steel on a light-water pressure vessel steel

Matsukawa, Yoshitaka*; Kakubo, Yuta*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Takeuchi, Tomoaki; Yamaguchi, Yoshihito; Katsuyama, Jinya; Nishiyama, Yutaka

no journal, , 

The $$delta$$/$$gamma$$ duplex stainless steel overlay-welded on the inner wall of light-water reactor pressure vessels for protection from corrosion is known to exhibit a complex phase transformation under thermal aging. Our atom-probe tomography analysis revealed that in the $$delta$$-ferrite $$alpha$$/$$alpha$$' spinodal decomposition and precipitation of nanometer-sized Ni-Mn-Si clusters occur together at 673 K after 2000 hrs. The Ni-Mn-Si clusters visualized in the 3-D atom map are most likely G-phase, which is an intermetallic compound commonly observed in this type of duplex stainless steels; however, since crystallographic information is largely lost in atom-probe data, it is unknown if they are certainly G-phase accompanied with a specific supper-lattice structure or simple agglomerates of solute atoms without any crystal structure change. In the present study crystal structure of the Ni-Mn-Si nano-clusters has been analyzed by transmission electron microscopy to determine the fraction of G-phase over all clusters.

Oral presentation

Thermal aging time dependence of nanostructural changes in an overlay-clad duplex stainless steel on a light-water pressure vessel steel

Kakubo, Yuta*; Nozawa, Yasuko*; Matsukawa, Yoshitaka*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Kameda, Jun; Takeuchi, Tomoaki; Yamaguchi, Yoshihito; Katsuyama, Jinya; Nishiyama, Yutaka; et al.

no journal, , 

no abstracts in English

Oral presentation

Transmission electron microscopy crystal-structure analysis of G-phase precipitates in a $$delta$$/$$gamma$$ duplex stainless steel weld overlay cladding of light-water reactor pressure vessel steels

Matsukawa, Yoshitaka*; Kakubo, Yuta*; Nozawa, Yasuko*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Takeuchi, Tomoaki; Yamaguchi, Yoshihito; Katsuyama, Jinya; Nishiyama, Yutaka

no journal, , 

Crystal structure change and composition change of G-phase (Ni$$_{16}$$Si$$_{7}$$Mn$$_{6}$$) precipitates in a duplex stainless steel welded on an RPV steel were analyzed by transmission electron microscopy combined with atom-probe tomography. Based on TEM crystallographic analysis data and atom-probe composition analysis data, together with simulation results of electron diffraction patterns, it was found that those precipitates turned G-phase in structure-wise before they turned stoichiometric composition.

Oral presentation

3DAP analysis of a neutron-irradiated stainless steel weld-overlay cladding of nuclear reactor pressure vessel

Takeuchi, Tomoaki; Nishiyama, Yutaka; Katsuyama, Jinya; Onizawa, Kunio; Nozawa, Yasuko*; Matsukawa, Yoshitaka*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Kameda, Jun*

no journal, , 

Microstructure evolution on stainless overlay cladding of reactor pressure vessel was quantitatively investigated by means of three-dimensional local electrode atom probe (3DAP) in nano-scale. The cladding material was neutron-irradiated up to 7$$times$$10$$^{19}$$ n/cm$$^{2}$$ (E $$>$$ 1 MeV) at JMTR. In ferrite phases of cladding material, a 12% of Cr concentration fluctuation, which was arisen through a spinodal decomposition, observed before the irradiation was progressed to 20% after the irradiation while the wave length of the fluctuation was almost not changed about 8-10 nm before and after the irradiation. In addition, Ni, Si and Mn concentration fluctuations were also observed. The concentration fluctuations of the elements other than Cr and differences from the thermal aging will be reported in presentation.

Oral presentation

Microstructural analysis of neutron-irradiated stainless steel weld-overlay claddings of nuclear reactor pressurevessel

Takeuchi, Tomoaki; Nishiyama, Yutaka; Katsuyama, Jinya; Onizawa, Kunio; Nozawa, Yasuko*; Matsukawa, Yoshitaka*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Kameda, Jun*

no journal, , 

Microstructure evolutions on two types, namely electroslag (ESW) and submerged-arc (SAW) welding, of stainless overlay claddings of reactor pressure vessel were quantitatively investigated by means of three-dimensional local electrode atom probe (3DAP) in nano-scale. The cladding materials were neutron-irradiated up to about 7$$times$$10$$^{19}$$n/cm$$^{2}$$ (E $$>$$ 1 MeV) at JMTR. In ferrite phases of cladding materials, a 12% of Cr concentration fluctuation, which was arisen through a spinodal decomposition, observed before the irradiation was progressed to 20% after the irradiation while the wave length of the fluctuation was almost not changed about 8-10 nm before and after the irradiation. In addition, Ni, Si and Mn concentration fluctuations were also observed. Correlation between Cr concentration fluctuation and hardness, other elements concentration fluctuation and differences between the neutron irradiation and the thermal aging, the ESW and SAW will be reported in presentation.

Oral presentation

Development of fuel handling system in FaCT project, 6; Safety study on JSFR fuel handling system

Chikazawa, Yoshitaka; Kato, Atsushi; Uzawa, Masayuki*; Tozawa, Katsuhiro*; Chishiro, Ryo*; Obata, Hiroyuki*; Nishiyama, Noboru

no journal, , 

no abstracts in English

Oral presentation

Influence of additive elements on initial oxidation of Ni base alloys, 1

Doi, Takashi*; Nishiyama, Yoshitaka*; Teraoka, Yuden; Yoshigoe, Akitaka

no journal, , 

no abstracts in English

Oral presentation

Study on microstructural changes in neutron-irradiated stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography

Takeuchi, Tomoaki; Nishiyama, Yutaka; Katsuyama, Jinya; Onizawa, Kunio; Matsukawa, Yoshitaka*; Toyama, Takeshi*; Nagai, Yasuyoshi*; Kameda, Jun*

no journal, , 

Microstructure evolution on stainless overlay cladding of reactor pressure vessel was quantitatively investigated by means of three-dimensional local electrode atom probe (3DAP) in nano-scale. The cladding material was neutron-irradiated up to 7$$times$$10$$^{19}$$n/cm$$^{2}$$ (E $$>$$ 1 MeV)at JMTR. In ferrite phases of cladding material, a 12% of Cr concentration fluctuation, which was arisen through a spinodal decomposition, observed before the irradiation was progressed to 20% after the irradiation while the wave length of the fluctuation was almost not changed about 8-10 nm before and after the irradiation. In addition, Ni, Si and Mn concentration fluctuations were also observed. Correlation between Cr concentration fluctuation and hardness, other elements concentration fluctuation and differences from the thermal aging will be reported in presentation.

20 (Records 1-20 displayed on this page)
  • 1