Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Ikeda, Yoshitaka; Okano, Fuminori; Sakasai, Akira; Hanada, Masaya; Akino, Noboru; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; Kubo, Hirotaka; Kobayashi, Kazuhiro; et al.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 13(4), p.167 - 178, 2014/12
The JT-60U torus was disassembled so as to newly install the superconducting tokamak JT-60SA torus. The JT-60U used the deuterium for 18 years, so the disassembly project of the JT-60U was the first disassembly experience of a fusion device with radioactivation in Japan. All disassembly components were stored with recording the data such as dose rate, weight and kind of material, so as to apply the clearance level regulation in future. The lessons learned from the disassembly project indicated that the cutting technologies and storage management of disassembly components were the key factors to conduct the disassembly project in an efficient way. After completing the disassembly project, efforts have been made to analyze the data for characterizing disassembly activities, so as to contribute the estimation of manpower needs and the radioactivation of the disassembly components on other fusion devices.
Ikeda, Yoshitaka; Okano, Fuminori; Hanada, Masaya; Sakasai, Akira; Kubo, Hirotaka; Akino, Noboru; Chiba, Shinichi; Ichige, Hisashi; Kaminaga, Atsushi; Kiyono, Kimihiro; et al.
Fusion Engineering and Design, 89(9-10), p.2018 - 2023, 2014/10
Times Cited Count:2 Percentile:15.74(Nuclear Science & Technology)Disassembly of the JT-60U torus was started in 2009 after 18-years D operations, and was completed in October 2012. The JT-60U torus was featured by the complicated and welded structure against the strong electromagnetic force, and by the radioactivation due to D-D reactions. Since this work is the first experience of disassembling a large radioactive fusion device in Japan, careful disassembly activities have been made. About 13,000 components cut into pieces with measuring the dose rates were removed from the torus hall and stored safely in storage facilities by using a total wokers of 41,000 person-days during 3 years. The total weight of the disassembly components reached up to 5,400 tons. Most of the disassembly components will be treated as non-radioactive ones after the clearance verification under the Japanese regulation in future. The assembly of JT-60SA has started in January 2013 after this disassembly of JT-60U torus.
Nishiyama, Tomokazu; Yagyu, Junichi; Nakamura, Shigetoshi; Masaki, Kei; Okano, Fuminori; Sakasai, Akira
Heisei-26-Nendo Hokkaido Daigaku Sogo Gijutsu Kenkyukai Hokokushu (DVD-ROM), 6 Pages, 2014/09
no abstracts in English
Nishiyama, Tomokazu; Miyo, Yasuhiko; Okano, Fuminori; Sasajima, Tadayuki; Ichige, Hisashi; Kaminaga, Atsushi; Miya, Naoyuki; Sukegawa, Atsuhiko; Ikeda, Yoshitaka; Sakasai, Akira
JAEA-Technology 2014-006, 30 Pages, 2014/03
JT-60 tokamak device and the peripheral equipment were disassembled so as to be upgraded to the superconducting tokamak JT-60SA. The disassembled components were stored into storage and airtight containers at the radioactive control area. The total weight and the total number of those components are about 1,100 tons and about 11,500 except for large components. Radiation measurements and records of the radioactive components were required one by one under the law of Act on Prevention of Radiation Disease Due to Radioisotopes, etc. for the control of transport and storage from the radioactive control area to the other area. The storage management of the radioactive components was implemented by establishing the work procedure and the component management system by barcode tags. The radioactive components as many as 11,500 were surely and effectively stored under the law. The report gives the outline of the storage of JT-60 radioactive components by the storage containers.
Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Junichi; Ishige, Yoichi; Suzuki, Hiroaki; Komuro, Kenichi; et al.
JAEA-Technology 2014-003, 125 Pages, 2014/03
The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the wielded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device.
Suzuki, Sadaaki; Yagyu, Junichi; Masaki, Kei; Nishiyama, Tomokazu; Nakamura, Shigetoshi; Saeki, Hisashi; Hoshi, Ryo; Sawai, Hiroaki; Hasegawa, Koichi; Arai, Takashi; et al.
NIFS-MEMO-67, p.266 - 271, 2014/02
no abstracts in English
Okano, Fuminori; Masaki, Kei; Yagyu, Junichi; Shibama, Yusuke; Sakasai, Akira; Miyo, Yasuhiko; Kaminaga, Atsushi; Nishiyama, Tomokazu; Suzuki, Sadaaki; Nakamura, Shigetoshi; et al.
JAEA-Technology 2013-032, 32 Pages, 2013/11
Japan Atomic Energy Agency started to construct a fully superconducting tokamak experiment device, JT-60SA, to support the ITER since January, 2013 at the Fusion Research and Development Directorate in Naka, Japan. The JT-60SA will be constructed with enhancing the previous JT-60 infrastructures, in the JT-60 torus hall, where the ex-JT-60 machine was disassembled. The JT-60SA Cryostat Base, for base of the entire tokamak structure, were assembly as first step of this construction. The Cryostat Base (CB, 250 tons) is consists of 7 main made of stainless steel, 12m diameter and 3m height. It was built in the Spain and transported to the Naka site with the seven major parts split, via Hitachi port. The assembly work of these steps, preliminary measurements, sole plate adjustments of its height and flatness, and assembly of the CB. Introduces the concrete result of assembly work and transport of JT-60SA cryostat base.
Okano, Fuminori; Ikeda, Yoshitaka; Sakasai, Akira; Hanada, Masaya; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Junichi; et al.
JAEA-Technology 2013-031, 42 Pages, 2013/11
The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 6200 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the wielded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device.
Nishiyama, Tomokazu; Okano, Fuminori; Miyo, Yasuhiko; Kubo, Hirotaka; Miya, Naoyuki; Oikawa, Akira; Sasajima, Tadayuki; Sakasai, Akira
Heisei-22-Nendo Kumamoto Daigaku Sogo Gijutsu Kenkyukai Hokokushu (CD-ROM), 5 Pages, 2011/03
no abstracts in English
Takenaga, Hidenobu; Miyo, Yasuhiko; Bucalossi, J.*; Marty, V.*; Urano, Hajime; Asakura, Nobuyuki; Nishiyama, Tomokazu; Sasajima, Tadayuki; Masaki, Kei; Kaminaga, Atsushi
Nuclear Fusion, 50(11), p.115003_1 - 115003_10, 2010/11
Times Cited Count:19 Percentile:57.62(Physics, Fluids & Plasmas)The supersonic molecular beam injection (SMBI) was successfully operated in JT-60U. Frequent density jumps were clearly observed in the main plasma against the SMBI pulses with the background gas pressure () of 2-6 bar. Fuelling efficiency exhibited weak dependence on and the injection direction (high- and low-field-side injections). The amount of the fuelling necessary for achieving the same density level is much smaller for the SMBI than for the gas-puffing. It is comparable for the SMBI and the pellet injection even with shallower penetration of the SMBI as discussed below. The SMBI ionization area was estimated based on emission measured using the fast TV camera with a time resolution of 0.167 ms. The estimations indicated similar penetration position for = 6 and 2 bar, although the ionization area was larger for 6 bar. This result supports the weak dependence of the fuelling efficiency. The front of the ionization area moved between first and second frames of the fast TV camera and it reached just inside the separatrix in the second frame. The ionization area was significantly expanded from the expected SMB size and the expansion was also enhanced between two frames. These relatively slow changes between two frames suggest that interaction between SMB and plasma significantly influences the fuelling characteristics.
Takenaga, Hidenobu; Oyama, Naoyuki; Urano, Hajime; Sakamoto, Yoshiteru; Asakura, Nobuyuki; Kamiya, Kensaku; Miyo, Yasuhiko; Nishiyama, Tomokazu; Sasajima, Tadayuki; Masaki, Kei; et al.
Nuclear Fusion, 49(7), p.075012_1 - 075012_11, 2009/07
Times Cited Count:9 Percentile:33.45(Physics, Fluids & Plasmas)Characteristics of internal transport barrier (ITB) have been investigated under reactor relevant condition with edge fuelling and electron heating in JT-60U weak shear plasmas. High confinement was sustained at high density with edge fuelling by shallow pellet injection or supersonic molecular beam injection (SMBI). The ion temperature (T) in the central region inside the ITB decreased due to cold pulse propagation even with edge fuelling. By optimizing the injection frequency and the penetration depth, the decreased central T was recovered and good ITB was sustained with enhanced pedestal pressure. The T-ITB also degraded significantly with electron cyclotron heating (ECH), when stiffness feature was strong in the electron temperature (T) profile. The ion thermal diffusivity in the ITB region increased with the electron thermal diffusivity, indicating existence of clear relation between ion and electron thermal transport. On the other hand, T-ITB unchanged or even grew, when stiffness feature was weak in the T profile. Density fluctuation level at ITB seemed to be unchanged during ECH, however, correlation length became longer in the T-ITB degradation case and shorter in the T-ITB unchanging case.
Takenaga, Hidenobu; Oyama, Naoyuki; Urano, Hajime; Sakamoto, Yoshiteru; Kamiya, Kensaku; Miyo, Yasuhiko; Nishiyama, Tomokazu; Sasajima, Tadayuki; Masaki, Kei; Kaminaga, Atsushi; et al.
Proceedings of 22nd IAEA Fusion Energy Conference (FEC 2008) (CD-ROM), 8 Pages, 2008/10
Characteristics of internal transport barrier (ITB) have been investigated under reactor relevant condition with edge fuelling and electron heating in JT-60U weak shear plasmas. High confinement was sustained at high density with edge fuelling by shallow pellet injection or supersonic molecular beam injection (SMBI). The ion temperature () in the central region decreased even with edge fuelling. The decrease with edge fuelling was larger inside the ITB than that outside the ITB, which can be described by cold pulse propagation using the ion thermal diffusivity () estimated from power balance analysis in the SMBI case. By optimizing the injection frequency and the penetration depth, the decreased was recovered and good ITB was sustained with enhanced pedestal pressure. The -ITB also degraded significantly when stiffness feature was strong in the electron temperature () profile against electron cyclotron heating (ECH). The value of in the ITB region increased with the electron thermal diffusivity (), indicating existence of clear relation between ion and electron thermal transport. On the other hand, -ITB unchanged or even grew, when stiffness feature was weak in the profile. Density fluctuation level seemed to be unchanged during ECH, however, correlation length became longer in the -ITB degradation case and shorter in the -ITB unchanging case.
Miyo, Yasuhiko; Yagyu, Junichi; Nishiyama, Tomokazu; Honda, Masao; Ichige, Hisashi; Kaminaga, Atsushi; Sasajima, Tadayuki; Arai, Takashi; Sakasai, Akira
Fusion Engineering and Design, 83(2-3), p.337 - 340, 2008/04
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)no abstracts in English
Nishiyama, Tomokazu; Sasaki, Shunichi; Miyo, Yasuhiko; Honda, Masao; Sakai, Tomonori*
Heisei-18-Nendo Nagoya Daigaku Sogo Gijutsu Kenkyukai Sochi Gijutsu Kenkyukai Hokokushu, p.102 - 105, 2007/03
no abstracts in English
Miyo, Yasuhiko; Nishiyama, Tomokazu; Takenaga, Hidenobu; Kaminaga, Atsushi; Sasajima, Tadayuki; Masaki, Kei
Heisei-18-Nendo Nagoya Daigaku Sogo Gijutsu Kenkyukai Sochi Gijutsu Kenkyukai Hokokushu, p.124 - 127, 2007/03
no abstracts in English
Takenaga, Hidenobu; Oyama, Naoyuki; Urano, Hajime; Kamiya, Kensaku; Miyo, Yasuhiko; Nishiyama, Tomokazu; Sasajima, Tadayuki; Masaki, Kei; Hiratsuka, Hajime; Ichige, Hisashi; et al.
Europhysics Conference Abstracts (CD-ROM), 30I, 4 Pages, 2006/00
no abstracts in English
Arai, Takashi; Nishiyama, Tomokazu; Yagyu, Junichi; Kasai, Satoshi; Sone, Isamu*; Abe, Mitsushi*; Miya, Naoyuki
Fusion Science and Technology, 45(1), p.65 - 68, 2004/01
Times Cited Count:2 Percentile:16.97(Nuclear Science & Technology)In a nuclear fusion experiment device, a plasma discharge is to be sustained for a long time in steady state operation. In such a device an electromagnetic sensor that has a signal integrator to measure direct currents will cause a technical problem of zero point drift on signals. So, the detection device using new technology for direct current measurement, optical current transformer (optical CT), was developed. The device has an optical fiber specified for 1550nm (wavelength) was manufactured, and was applied to JT-60U experiments. A gamma ray irradiation examination was also done to the optical CT
Nishiyama, Tomokazu; Arai, Takashi; Miyo, Yasuhiko; Hiratsuka, Hajime; Honda, Masao; Miya, Naoyuki
Heisei-14-Nendo Tokyo Daigaku Sogo Gijutsu Kenkyukai Gijutsu Hokokushu, p.2_28 - 2_30, 2003/03
no abstracts in English
Nishiyama, Tomokazu; Arai, Takashi; Hayashi, Takao; Yagyu, Junichi; Miya, Naoyuki; Abe, Mitsushi*
Dai-32-Kai Koha Senshingu Gijutsu Kenkyukai Koen Rombunshu, p.147 - 152, 2003/00
In a nuclear fusion equipment device, plasma discharges are expected to become a long time. In such a device an electromagnetic sensor that has a signal integrator to measure direct currents will cause a technical problem of zero point drift on signals. Furthermore, the development for solving the problem cause cost rise. Therefore, the detection device using new technology for direct current measurement, optical fiber current transformer (optical CT), was developed. Direct-current measurement of JT-60 was carried out using this detection device. A ray irradiation examination was also done to the optical CT.
Kizu, Kaname; Hiratsuka, Hajime; Miyo, Yasuhiko; Ichige, Hisashi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Masaki, Kei; Honda, Masao; Miya, Naoyuki; Hosogane, Nobuyuki
Fusion Science and Technology (JT-60 Special Issue), 42(2-3), p.396 - 409, 2002/09
Times Cited Count:4 Percentile:28.81(Nuclear Science & Technology)Designs and operations of the gas system and pellet injection systems for JT-60 were described. A gas injection valve that is a key component of the gas injection system was developed using a multi layer piezoelectric element. The maximum flow rate of this system is 43.3 Pam3/s. The valve has mechanism for adjustment at atmospheric side meaning that a repair and an adjustment can be conducted without ventilation inside a vacuum vessel. Two systems of pellet injector; one is pneumatic drive and another is centrifugal one were developed. The pneumatic type attained a pellet velocity of 2.3 km/s, which was the world record at the time in 1988. On the other hand, the centrifugal one was developed in 1998. This injector can eject trains of up to 40 cubic (2.1 mm)3 pellets at frequencies of 1~10 Hz and speed of 0.1~1.0 km/s. A guide tube for a magnetic high field side top injection HFS(top)) was also developed in 1999. The pellet injection experiment with the HFS system started in 2000. In addition, another guide tube for HFS(mid) injection was newly developed and installed in March 2001.