Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Kazama, Hiroyuki; Konashi, Kenji*; Suzuki, Tatsuya*; Koyama, Shinichi; Maeda, Koji; Sekio, Yoshihiro; Onishi, Takashi; Abe, Chikage*; Shikamori, Yasuyuki*; Nagai, Yasuyoshi*
Journal of Analytical Atomic Spectrometry, 38(8), p.1676 - 1681, 2023/07
Times Cited Count:0Nemoto, Takahiro; Arakawa, Ryoki; Kawakami, Satoru; Nagasumi, Satoru; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; Furusawa, Takayuki; Inoi, Hiroyuki; et al.
JAEA-Technology 2023-005, 33 Pages, 2023/05
During shut down of the HTTR (High Temperature engineering Test Reactor) RS-14 cycle, an increasing trend of filter differential pressure for the helium gas circulator was observed. In order to investigate this phenomenon, the blower of the primary helium purification system was disassembled and inspected. As a result, it is clear that the silicon oil mist entered into the primary coolant due to the deterioration of the charcoal filter performance. The replacement and further investigation of the filter are planning to prevent the reoccurrence of the same phenomenon in the future.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Kimura, Atsushi; Nakamura, Shoji; Endo, Shunsuke; Nagaya, Yasunobu; Tada, Kenichi; et al.
EPJ Web of Conferences, 284, p.14001_1 - 14001_7, 2023/05
Iyota, Muneyoshi*; Matsuda, Tomoki*; Sano, Tomokazu*; Shigeta, Masaya*; Shobu, Takahisa; Yumoto, Hirokatsu*; Koyama, Takahisa*; Yamazaki, Hiroshi*; Semba, Yasunori*; Ohashi, Haruhiko*; et al.
Journal of Manufacturing Processes, 94, p.424 - 434, 2023/05
Times Cited Count:1 Percentile:84.05(Engineering, Manufacturing)Kuwagaki, Kazuki; Yokoyama, Kenji
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
At the Japan Atomic Energy Agency (JAEA), a design support tool for advanced nuclear reactors is currently under development. This tool is called ARKADIA-Design, and is expected to support the integrated design evaluation of reactors from the viewpoints of safety, economy, and sustainability as a carbon-free energy source by utilizing the newest analysis/evaluation technologies such as AI technology, and the accumulated knowledge of fast reactor development. One development task of the ARKADIA-Design is to build a system that automatically identifies optimized design parameters by which an objective function specified by core performance is minimized (or maximized). In the present study, we set up a single objective optimization example problem with multiple constraints for a homogeneous two-region core, and showed that the optimal solution of this example problem can be automatically obtained by the Bayesian optimization method, which is a candidate optimization algorithm for the system. In addition, we also demonstrated how the system would assist the core design procedure in future, by indirectly solving a three-variable optimization problem of the core design. From these results and demonstrations, we confirmed that the system to be developed has the potential to be a useful support tool for the designers, enabling them to obtain optimal core designs efficiently.
Hamase, Erina; Kuwagaki, Kazuki; Doda, Norihiro; Yokoyama, Kenji; Tanaka, Masaaki
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 10 Pages, 2023/05
To innovate a core design process, an optimization process for the core design has been developed as a part of the design optimization support tool named ARKADIA-Design. The core design optimization process is integrated by the core design analysis of neutronics, thermal-hydraulics, and fuel integrity and plant dynamics analysis with the Bayesian optimization (BO) algorithm. The optimization problem for design parameters with high core performance and inherent safety in ULOF event was solved by the integrated analysis between the neutronics and plant dynamics with the BO in a primary loop system including a core consisting of two-dimensional RZ cylindrical geometry. It was indicated that the optimization process could obtain an optimal solution.
Tada, Kenichi; Nagaya, Yasunobu; Taninaka, Hiroshi; Yokoyama, Kenji; Okita, Shoichiro; Oizumi, Akito; Fukushima, Masahiro; Nakayama, Shinsuke
Journal of Nuclear Science and Technology, p.1 - 21, 2023/04
Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)The new version of the Japanese evaluated nuclear data library, JENDL-5, was released in December 2021. This paper demonstrates the validation of JENDL-5 for fission reactor applications. Benchmark calculations are performed with the continuous-energy Monte Carlo codes MVP and MCNP and the deterministic code system MARBLE. The benchmark calculation results indicate that the performance of JENDL-5 for fission reactor applications is better than that of the former library JENDL-4.0.
Yokoyama, Kenji
EPJ Web of Conferences, 281, p.00004_1 - 00004_10, 2023/03
In Japan, development of adjusted nuclear data library for fast rector application based on the cross-section adjustment method has been conducted since the early 1990s. The adjusted library is called the unified cross-section set. The first version was developed in 1991 and is called ADJ91. Recently, the integral experimental data were further expanded to improve the design prediction accuracy of the core loaded with minor actinoids and/or degraded Pu. Using the additional integral experimental data, development of ADJ2017 was started in 2017. In 2022, the latest unified cross-section set AJD2017R was developed based on JENDL-4.0 by using 619 integral experimental data. An overview of the latest version with a review of previous ones will be shown. On the other hand, JENDL-5 was released in 2021. In the development of JENDL-5, some of the integral experimental data used in ADJ2017R were explicitly utilized in the nuclear data evaluation. However, this is not reflected in the covariance data. This situation needs to be considered when developing a unified cross-section set based on JENDL-5. Preliminary adjustment calculation based on JENDL-5 is performed using C/E (calculation/experiment) values simply evaluated by a sensitivity analysis. The preliminary results will be also discussed.
Iwamoto, Osamu; Iwamoto, Nobuyuki; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke; Abe, Yutaka*; Tsubakihara, Kosuke*; Okumura, Shin*; Ishizuka, Chikako*; Yoshida, Tadashi*; et al.
Journal of Nuclear Science and Technology, 60(1), p.1 - 60, 2023/01
Times Cited Count:17 Percentile:99.95(Nuclear Science & Technology)Iwasa, Kazuaki*; Suyama, Kazuya*; Kawamura, Seiko; Nakajima, Kenji; Raymond, S.*; Steffens, P.*; Yamada, Akira*; Matsuda, Tatsuma*; Aoki, Yuji*; Kawasaki, Ikuto; et al.
Physical Review Materials (Internet), 7(1), p.014201_1 - 014201_11, 2023/01
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Ramadhan, R. S.*; Glaser, D.*; Soyama, Hitoshi*; Kockelmann, W.*; Shinohara, Takenao; Pirling, T.*; Fitzpatrick, M. E.*; Tremsin, A. S.*
Acta Materialia, 239, p.118259_1 - 118259_12, 2022/10
Times Cited Count:2 Percentile:32.61(Materials Science, Multidisciplinary)Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Tada, Kenichi; Sugawara, Takanori; Yokoyama, Kenji
Kaku Deta Nyusu (Internet), (133), p.1 - 6, 2022/10
no abstracts in English
Isegawa, Kazuhisa; Setoyama, Daigo*; Higuchi, Yuki*; Matsumoto, Yoshihiro*; Nagai, Yasutaka*; Shinohara, Takenao
Nuclear Instruments and Methods in Physics Research A, 1040, p.167260_1 - 167260_10, 2022/10
Times Cited Count:1 Percentile:49.42(Instruments & Instrumentation)Doda, Norihiro; Kato, Shinya; Iida, Masaki*; Yokoyama, Kenji; Tanaka, Masaaki
Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 8 Pages, 2022/10
In the conventional core design in sodium-cooled fast reactors (SFRs), negative reactivity feedback due to core deformation was neglected because of large uncertainty in analytical evaluation. To optimize core design, it is necessary to develop an analytical evaluation method and eliminate excessive conservativeness. An evaluation method for core deformation reactivity has been developed by coupling analysis of neutronics, thermal-hydraulics, and structural mechanics. For the verification study of the neutronics calculation method, the reactivity was calculated for the deformed core geometry in which the fuel assembly (FA) moved horizontally in the radial direction for each row from the core center. Compared to reference values derived from Monte Carlo calculations, the calculated reactivity due to FA displacement agreed well in the core region and was overestimated in the reflector region. The modification challenges in development of the core deformation model were identified.
Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
Times Cited Count:3 Percentile:84.2(Nuclear Science & Technology)In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.
Omasa, Yoshinori*; Takagi, Shigeyuki*; Toshima, Kento*; Yokoyama, Kaito*; Endo, Wataru*; Orimo, Shinichi*; Saito, Hiroyuki*; Yamada, Takeshi*; Kawakita, Yukinobu; Ikeda, Kazutaka*; et al.
Physical Review Research (Internet), 4(3), p.033215_1 - 033215_9, 2022/09
Doda, Norihiro; Yoshimura, Kazuo; Hamase, Erina; Yokoyama, Kenji; Uwaba, Tomoyuki; Tanaka, Masaaki
Proceedings of Technical Meeting on State-of-the-art Thermal Hydraulics of Fast Reactors (Internet), 3 Pages, 2022/09
ARKADIA-Design is being developed to support the optimization of sodium-cooled fast reactors in the conceptual design stage. Design optimization requires various types of numerical analysis: 1-D plant dynamics analysis for efficient evaluation of various design options and multi-dimensional analysis for a detailed evaluation of local phenomena, including multi-physics. For those analyses, ARKADIA-Design performs whole plant analyses based on the multi-level simulation (MLS) technique in which the analysis codes are coupled to simulate the phenomena in an intended degree of resolution. This paper describes an outline of the coupling analysis methods in the MLS of the ARKADIA-Design and the numerical simulations of the experimental fast breeder reactor EBR-II tests by the coupled analysis.
Tanaka, Masaaki; Doda, Norihiro; Yokoyama, Kenji; Mori, Takero; Okajima, Satoshi; Hashidate, Ryuta; Yada, Hiroki; Oki, Shigeo; Miyazaki, Masashi; Takaya, Shigeru
Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 5 Pages, 2022/07
To assist conceptual studies of various reactor systems conducted by private sectors in nuclear power innovation, development of an innovative design system named ARKADIA (Advanced Reactor Knowledge- and AI-aided Design Integration Approach through the whole plant lifecycle) is undergoing to achieve the design of an advanced nuclear reactor as a safe, economic, and sustainable carbon-free energy source. In this paper, focusing on the ARKADIA-Design as a part of it, the progress in the development of optimization processes on the representative problems in the fields of the core design, the plant structure design, and the maintenance schedule planning are introduced.
Yokoyama, Kenji; Taninaka, Hiroshi
Kaku Deta Nyusu (Internet), (132), p.25 - 33, 2022/06
This article explains the results of integral test of JENDL-5 by benchmark analysis in fast reactor system, which were presented in a special session of the 2022 Spring Annual Meeting of the Atomic Energy Society of Japan (AESJ). The latest version of Japanese evaluated nuclear data library, JENDL-5, was released in December 2021. In order to confirm the applicability of JENDL-5 to the fast reactor system, we conducted a set of benchmark analysis using the integral experiment data included in the fast reactor nuclear design database which is being developed by JAEA. With respect to major nuclear characteristics in the standard fast reactor system, it was confirmed that the ratios of analysis result and experimental result (C/E values) based on JENDL-5 were almost the same as those of JENDL-4.0. In the special session, the results of sensitivity analysis were reported. Since the results have been described in the proceedings of the AESJ meeting, we add the results of the versions under development of JENDL-5 and discuss their relationship with the reported results of sensitivity analysis.