Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Mochizuki, Akihito; Sato, Toshinori; Wada, Junichi*
JAEA-Research 2024-003, 86 Pages, 2024/06
For the geological disposal of high-level radioactive waste, research and studies are being conducted in Japan and abroad to contribute to the mitigation of the upper temperature limit (100C) in the buffer material assumed in the current disposal system. In this study, uniaxial compression tests under several temperature conditions, some of which exceed 100C, were conducted to understand changes in rock properties under high temperature conditions, using siliceous mudstone (Wakkanai formation) from Horonobe, Hokkaido, as a case study. The uniaxial compressive strength of the rock increased with heating temperature. The uniaxial compressive strength of specimens heated above 100C was comparable to that of specimens desiccated before testing. Mineralogical observations by scanning electron microscopy showed no evidence of alteration of pore structure or minerals, as observed in other rocks in previous studies. In conclusion, the increase in strength of siliceous mudstone with heating temperature observed in this study is considered to be due to the drying of the specimens with heating.
Nara, Yoshitaka*; Kato, Masaji*; Sato, Tsutomu*; Kono, Masanori*; Sato, Toshinori
Journal of MMIJ, 138(4), p.44 - 50, 2022/04
It is important to understand the long-term migration of radionuclides when considering rock engineering projects such as the geological disposal of radioactive waste. The network of fractures and pores in a rock mass plays a major role in fluid migration as it provides a pathway for fluid flow. The geometry of a network can change due to fracture sealing by some fine-grained materials over long-term periods. In the present study, we use a macro-fractured granite sample to investigate the change of permeability that occurs under the flow of water that includes two different amounts of clay. Findings showed that clay accumulated in a fracture and that the permeability (hydraulic conductivity) of the granite sample decreased over time, which was greater in for the higher clay content. We concluded that the accumulation of clay minerals in the fracture decreased the permeability of the rock. Furthermore, we consider that the filling and closure of fractures in rock is possible under the flow of groundwater that includes clay minerals.
Takamura, Hiroaki*; Hamada, Hajime*; Sato, Toshinori
Dai-48-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.13 - 18, 2022/01
In the stage blasting of a mountain tunnel, the condition of single hole initiation in which the effect of other stage does not enter was made by increasing the interval of initiation time between front and rear stages using an electron detonator, and the waveform of vibration and sound pressure at that time was measured. The knowledge obtained from the analysis of sound pressure waveform of single hole blasting is considered to be effective to be utilized for the examination of sound pressure reduction effect of controlled blasting and the analysis of error of noise prediction formula.
Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.
JAEA-Research 2019-013, 276 Pages, 2020/03
The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.
Tsuji, Masakuni*; Nakashima, Hitoshi*; Saito, Akira*; Okihara, Mitsunobu*; Sato, Toshinori
45th Annual Waste Management Conference (WM 2019); Encouraging Young Men & Women to Achieve Their Goals in Radwaste Management, Vol.7, p.4749 - 4763, 2020/01
A rock excavation grouting technology has been recently studied as significant technology for reducing the ingress of water into the deep repository. However, it has not been studied for applying to the coastal region, where it is discussed to be a more suitable region for the geological disposal in Japan. The latest material called colloidal silica grout (CSG) is good for sealing narrow fractures but is known to be sensitive to the salinity of groundwater because of its gelling property with salt accelerator. Although the gelling of CSG can be controlled by adding an acidic pH adjuster, the methodology for delivering the appropriate grout is not well established for such conditions of saline groundwater. Therefore, this research project was established to enhance the existing rock grouting technology for deep repositories.
Tsuji, Masakuni*; Okihara, Mitsunobu*; Nakashima, Hitoshi*; Saito, Akira*; Aoyagi, Kazuhei; Sato, Toshinori
Dai-47-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (Internet), p.266 - 271, 2020/01
As engineering technique for geological disposal, a lot of advancement development of the grout technology has been performed. But the design, construction method in consideration of the properties of matter acquisition and mechanism of the hardening that assumed a seawater condition bottom is non-establishment. As we carried out the knowledge under saline water, the basic properties acquisition, the penetration properties acquisition, a study revue based on such situation.
Nara, Yoshitaka*; Kato, Masaji*; Sato, Tsutomu*; Kono, Masanori*; Sato, Toshinori
Proceedings of 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future (YSRM 2019 and REIF 2019) (USB Flash Drive), 6 Pages, 2019/12
It is important to understand the long-term migration of radionuclides considering carious rock engineering projects such as the geological disposal of radioactive wastes. The network of fractures and pores in a rock mass can play important roles as the pathway of the fluid flow of rock. Usually groundwater contains fine-grained minerals such as clays. It is probable that the accumulation of the fine-grained minerals occurs in a fracture if the groundwater flows in a fracture in a rock. In this study, we have conducted the permeability measurement using water including clays. Specifically, we used a macro-fractured granite as a rock sample, and investigated the change of the permeability under the flow of the water including clays. It was shown that the hydraulic conductivity decreased with elapsed time.
Martikainen, J.*; Tsuji, Masakuni*; Schatz, T.*; Nakashima, Hitoshi*; Okihara, Mitsunobu*; Aoyagi, Kazuhei; Sato, Toshinori
Proceedings of the Nordic Grouting Symposium 2019 (Internet), 13 Pages, 2019/09
This paper shows a result of the part of the study on characterisation of penetration of the colloidal silica grout (CSG) under saline groundwater, aiming to understand the impact of salinity on grout penetration by verifying the improved penetration theory with laboratory tests. This theory was proposed to add a time factor to the existing penetration theory of Funehag, especially under the saline groundwater conditions. A series of grout injection tests by the fracture test system were performed. The CSG of one European and Japanese were injected in the system, filled with the five different groundwater simulants. All no-flow tests were successful, resulting in the formation of relatively homogeneous gelled zones. Based on the analysis of acquired , it was found that as an alternative method, designing a longer gel time by multiplying the inverse value of can be proposed to attain the required penetration. Although the results were fruitful, further investigation is necessary to develop this penetration theory.
Tsuji, Masakuni*; Aoyagi, Kazuhei; Nakashima, Hitoshi*; Okihara, Mitsunobu*; Sato, Toshinori
Proceedings of the Nordic Grouting Symposium 2019 (Internet), 15 Pages, 2019/09
This paper shows an overall result of the 3-year study on the characterisation of the colloidal silica grout (CSG) under saline groundwater, aiming to enhance the existing rock grouting technology, especially for the CSG under the saline groundwater. As a first step, we performed the survey of the latest grouting technology of CSG. We developed a feasible mixing methodology and have obtained the various CSG's properties impacted by the salty mixing water or submerged by saline water. Moreover, we proposed a theory for the grout penetration under saline water and performed the injection tests. In the second workshop in the final year, our overall findings in this study were recognised to attain some progress in the development of the grouting technology.
Aoyagi, Kazuhei; Tokiwa, Tetsuya*; Sato, Toshinori; Hayano, Akira
Proceedings of 2019 Rock Dynamics Summit in Okinawa (USB Flash Drive), p.682 - 687, 2019/05
In high-level radioactive disposal projects, it is important to investigate the extent of the excavation damaged zone (EDZ) for safety assessment because EDZ can provide a migration pathway for radionuclides from the facility. To investigate the quantitative differences between EDZs formed because of blasting and mechanical excavation, we studied the characteristics of fractures induced by excavation based on fracture mapping performed during shaft sinking (V- and E-Shafts). As a result, it was found that blasting excavation can lead to the formation of a large number of newly created fractures (EDZ fractures) compared with mechanical excavation. In addition, the seismic velocity (P-wave velocity) measured during blasting excavation (E-Shaft) was lower than that measured during mechanical excavation (V-Shaft). Furthermore, we found that the support pattern that reinforces forward rocks to be appropriate for limiting damage to the shaft wall.
Sato, Toshinori; Aoyagi, Kazuhei; Miyara, Nobukatsu; Aydan, mer*; Tomiyama, Jun*; Morita, Tatsuri*
Proceedings of 2019 Rock Dynamics Summit in Okinawa (USB Flash Drive), p.640 - 645, 2019/05
An earthquake with a moment magnitude of 4 occurred in June 20, 2018, which is also named as the 2018 June 20 Soya Region earth-quake. The strong motions induced by this earthquake were recorded by the accelerometers installed in the Horonobe URL as well as the Kik-Net and K-Net strong motions networks operated by the National Research Institute for Earth Science and Disaster Prevention of Japan. The authors explain the results of the analyses carried out on the ground amplification and frequency characteristics of the acceleration records at the Horonobe URL and those of the Kik-net strong motion station and the structural effect of the URL on the ground amplification and frequency characteristics. Furthermore, the authors discuss the implications of the results obtained from this study in practice and the safety of the nuclear waste disposal at depth.
Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*
Materials Transactions, 59(9), p.1427 - 1432, 2018/09
Times Cited Count:7 Percentile:34.08(Materials Science, Multidisciplinary)To ensure the safe geological disposal of radioactive waste, it is important to determine the permeability (hydraulic conductivity) of clays. The transient pulse method is suitable for low-permeability materials because it requires a relatively short time to determine their permeability. Upstream pore pressure typically increases in the measurement conducted via the transient pulse method. However, this procedure cannot be used to determine the permeability of clays due to the increase in pore pressure. Therefore, the transient pulse method has never been applied to determine clay permeability. In this study, we applied the transient pulse method to a clay sample to determine its permeability while decreasing the downstream pore pressure.
Nara, Yoshitaka*; Kuwatani, Ryuta*; Kono, Masanori*; Sato, Toshinori; Kashiwaya, Koki*
Zairyo, 67(7), p.730 - 737, 2018/07
Information of confining ability of rock is important for the geological disposal of radioactive wastes. To maintain or improve the confining ability of rocks, it is important to seal pores and cracks. In this study, we investigated the precipitation of minerals on the rock surface. As rock samples, we used Berea sandstone and Toki granite in this study. It was shown that precipitation occurred on the surface of rock specimens kept in calcium hydroxide solution for 1 month if the concentration was high. Specifically, if the concentration of calcium hydroxide solution was higher than 300 mg/l, the precipitation occurred obviously. After keeping rock specimens in calcium hydroxide solution, the weight of the rock samples increased and the concentration of calcium ion decreased by the precipitation. It is considered that the calcium ion in water was used for the precipitation on rock surfaces. Since the precipitation has been recognized for rock surfaces, it is possible to seal pores and cracks in rocks. Therefore, it is also possible to keep or decrease the permeability of rocks by the precipitation of calcium compounds.
Sato, Toshinori; Aoyagi, Kazuhei; Matsuzaki, Yoshiteru; Miyara, Nobukatsu; Miyakawa, Kazuya
Rock Dynamics; Experiments, Theories and Applications, p.575 - 580, 2018/06
Rock dynamics is one of key issue for research and development of techniques for safe geological disposal of high-level radioactive waste. Horonobe Underground Research Laboratory (URL) is off-site URL constructed in soft sedimentary rock to the depth of 350m with three shafts and three level experimental galleries. Earthquake-resistant design of underground openings, observation of seismic records and groundwater pressure change due to earthquakes, and excavation disturbed zone experiment have been performed relating to the study of rock dynamics in URL project. This paper shows current status of Horonobe URL project and results of earthquake-resistant design of shafts, observation of seismic records and groundwater pressure change due to the 2011 off the Pacific coast of Tohoku Earthquake.
Nara, Yoshitaka*; Kato, Masaji*; Niri, Ryuhei*; Kono, Masanori*; Sato, Toshinori; Fukuda, Daisuke*; Sato, Tsutomu*; Takahashi, Manabu*
Pure and Applied Geophysics, 175(3), p.917 - 927, 2018/03
Times Cited Count:15 Percentile:57.41(Geochemistry & Geophysics)Information on the permeability of rock is essential for various geoengineering projects. It is especially important to investigate how fractures and pores influence the physical and transport properties of rock. Infiltration of groundwater through the damage zone fills fractures in granite with fine-grained minerals. However, the permeability of rock possessing a fracture naturally filled with fine-grained mineral grains has yet to be investigated. In this study, the permeabilities of granite samples, including a macro-fracture filled with clay and a mineral vein, are investigated. The permeability of granite with a fine-grained mineral vein agrees well with that of the intact sample, whereas the permeability of granite possessing a macro-fracture filled with clay is lower than that of the macro-fractured sample. The decrease in the permeability is due to the filling of fine-grained minerals and clay in the macro-fracture. It is concluded that the permeability of granite increases due to the existence of the fractures, but decreases upon filling them with fine-grained minerals.
Kato, Masaji*; Nara, Yoshitaka*; Okazaki, Yuki*; Kono, Masanori*; Sato, Toshinori; Sato, Tsutomu*; Takahashi, Manabu*
Zairyo, 67(3), p.318 - 323, 2018/03
To ensure the safe geological disposal of radioactive wastes, it is important to determine the permeability of clays. The transient pulse test is suitable to apply to the low permeability materials, because it takes relatively short term to determine the permeability. Usually we increase the upstream pore pressure in the measurement with the transient pulse test. However, it is impossible to determine the permeability of clay in this procedure because of the increase of pore pressure. Therefore, the transient pulse test has never been applied to the determination of permeability of clays. In this study, we tried to apply the transient pulse test to a clay obtained in Mizunami Underground Research Laboratory to determine the permeability with decreasing the downstream pore pressure. It was clarified that the transient pulse test with decreasing downstream pore pressure is appropriate from the measurements of granite and sandstone. It was shown that the permeability of a clay was determined by the transient pulse test with decreasing the downstream pore pressure, which agreed with the permeability determined from the falling head test. The measurement time of the transient pulse test is much shorter than that of the falling head test. It is concluded that the transient pulse test is appropriate for the determination of the permeability of clays.
Toguri, Satohito*; Okihara, Mitsunobu*; Tsuji, Masakuni*; Nakashima, Hitoshi*; Sugiyama, Hirokazu*; Saito, Akira*; Sato, Toshinori; Aoyagi, Kazuhei; Masunaga, Kosuke
JAEA-Research 2017-013, 131 Pages, 2018/02
The discussions on scientifically promising site for the geological disposal has been made at the council of studying group on techniques for geological disposal of radioactive wastes, which is held by Resources and Energy Agency. From the aspect of ensuring safety during the transportation of disposal waste, the coastal area is discussed to be a more suitable area. This report shows the result of the first year of this project as following items; Study on the state-of-art technology and remain tasks; laboratory tests on characterization of colloidal silica grout under sea water; Study on the development of grouting technology (design and the evaluation method of influence on the rock mass).
Takahashi, Tadao*; Sato, Toshinori; Masunaga, Kosuke
JAEA-Review 2017-030, 60 Pages, 2018/01
The amount of the information such as the data, models and analysis results related to geological environment has been enormous. It is believed that an appropriate organization of the information is useful for conducting geological environment survey work at the candidate sites of geological disposal. The Survey on Geological Disposal Technology projects commissioned by METI that started in FY2015 handles various information such as the data, models, analysis results, etc. of geological environment. In this project, in preparation for collection and compilation of the information on geological environment in coastal areas, we have made clear the current status of the existing systems including databases. At the same time, we have created measures for centralized information management for the purpose of organizing a huge amount of information as well as sharing the information and information management systems among the related organizations.
Otsuka, Yasunori*; Ishikawa, Takanori*; Tajima, Katsuhiro*; Wada, Tetsu*; Aydan, mer*; Tokashiki, Naohiko*; Sato, Toshinori; Aoyagi, Kazuhei
Journal of Nepal Geological Society, 55(Special Issue), p.1 - 6, 2018/00
Ultrasonic wave reflection intensity of the wall of borehole drilled from bottom of the East Access Shaft in the Horonobe Underground Research Laboratory, Hokkaido, Japan, was obtained using an ultrasonic scanner (USS). In this paper, we compared results of USS observation with core logging data including core observation, optical digital scanner (ODS) observation, and result of Needle Penetration Index (NPI) tests. The results indicated that ultrasonic wave reflection intensity had a good correlation with other observation results. USS observation and NPI tests are useful techniques for determination of detailed rock mass classification.
Tsuji, Masakuni*; Okihara, Mitsunobu*; Nakashima, Hitoshi*; Sato, Toshinori; Aoyagi, Kazuhei
Proceedings of 6th East Asia Forum on Radwaste Management Conference (EAFORM 2017) (Internet), 6 Pages, 2017/12
Regarding the engineering technology, the rock grouting has been recently studied as one of the most important technologies. Although the cement grout has not been reported to be affected by the sea water, the latest grouting material called colloidal silica grout is known to be sensitive to the saline water. The mechanism of its affection by sea water is not clear and its grouting methodology in such condition is not yet established either. Therefore, we studied on the latest grouting technologies for geological disposal in Nordic countries and Japan by article survey and a grouting workshop. As a result, it was found that the approach for countermeasures in grouting under sea water is different between Japan, Sweden, and Finland, which are based respectively on the mixture, on the design method, and on the controlling method. It seems that the best solution against this problem is to establish a hybrid and optimal grouting methodology under sea water by combining each country's developed grouting technology in the near future for saline condition, which is respectively based on mixing, design, and controlling method.