Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 58

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Features of particle and heavy ion transport code system (PHITS) version 3.02

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Tsai, P.-E.; Matsuda, Norihiro; Iwase, Hiroshi*; et al.

Journal of Nuclear Science and Technology, 55(6), p.684 - 690, 2018/06

 Times Cited Count:40 Percentile:0.03(Nuclear Science & Technology)

We have upgraded many features of the Particle and Heavy Ion Transport code System (PHITS) and released the new version as PHITS3.02. The accuracy and the applicable energy ranges of the code were greatly improved and extended, respectively, owing to the revisions to the nuclear reaction models and the incorporation of new atomic interaction models. In addition, several user-supportive functions were developed, such as new tallies to efficiently obtain statistically better results, radioisotope source-generation function, and software tools useful for applying PHITS to medical physics. In this paper, we summarize the basic features of PHITS3.02, especially those of the physics models and the functions implemented after the release of PHITS2.52 in 2013.

Journal Articles

Cutting-edge studies on nuclear data for continuous and emerging need, 7; Challenge to high energy area

Shigyo, Nobuhiro*; Iwase, Hiroshi*; Iwamoto, Yosuke; Sato, Tatsuhiko

Nippon Genshiryoku Gakkai-Shi, 60(5), p.294 - 298, 2018/05

For calculations of neutron productions and radiation damages in nuclear design of Accelerator Driven System (ADS) and exposure doses in radiation cancer therapy, radiation transport simulations with the high-energy nuclear data library evaluated with experimental data play an important role. Experimental data are needed for validation of nuclear reaction models in calculation codes. In this paper, we explain examples of nuclear data measurements in high energy region and the progress of the Particle and Heavy-Ion Transport code System (PHITS) developed in Japan.

Journal Articles

Measurement of neutron production double-differential cross-sections on carbon bombarded with 430 MeV/nucleon carbon ions

Itashiki, Yutaro*; Imabayashi, Yoichi*; Shigyo, Nobuhiro*; Uozumi, Yusuke*; Satoh, Daiki; Kajimoto, Tsuyoshi*; Sanami, Toshiya*; Koba, Yusuke*; Matsufuji, Naruhiro*

Journal of Radiation Protection and Research, 41(4), p.344 - 349, 2016/12

Carbon ion therapy has achieved satisfactory results because of high curability and minimally invasiveness. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes is needed. We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam which is a possible candidate of future therapy beam. The experiment was performed at PH2 beam line of the HIMAC of National Institute of Radiological Sciences. The 430 MeV/nucleon carbon beam was irradiated on a 5 cm $${times}$$ 5 cm $${times}$$ 1 cm graphite target rotated 45$$^{circ}$$ to the beam axis. The beam intensity was set to 10$$^{5}$$ particles / spill. A 0.5 mm thick NE102A plastic scintillator was placed to monitor the beam intensity. Neutrons produced in the target were measured with two sizes of NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and 90$$^{circ}$$. The 5.08 cm long one was used to obtain the neutron spectra from 1 MeV to 10 MeV and the 12.7 cm long one was used above 5 MeV. The 2 mm thick NE102A plastic scintillators to discriminate charged particles were set in front of the neutron detectors. The kinetic energies of neutrons were determined by the time-of-flight (TOF) method. Background neutrons were estimated by a measurement with iron shadow bars between the target and each neutron detector. An electronic circuit for data acquisition consisted of NIM and CAMAC modules. The experimental data was compared with calculated results obtained by Monte Carlo simulation codes as PHITS. The PHITS code reproduced the experimental data well.

Journal Articles

Distributions of neutron yields and doses around a water phantom bombarded with 290-MeV/nucleon and 430-MeV/nucleon carbon ions

Satoh, Daiki; Kajimoto, Tsuyoshi*; Shigyo, Nobuhiro*; Itashiki, Yutaro*; Imabayashi, Yoichi*; Koba, Yusuke*; Matsufuji, Naruhiro*; Sanami, Toshiya*; Nakao, Noriaki*; Uozumi, Yusuke*

Nuclear Instruments and Methods in Physics Research B, 387, p.10 - 19, 2016/11

 Times Cited Count:2 Percentile:57.25(Instruments & Instrumentation)

Double-differential neutron yields from a water phantom bombarded with 290-MeV/nucleon and 430-MeV/nucleon carbon ions were measured at emission angles of 15$$^{circ}$$, 30$$^{circ}$$, 45$$^{circ}$$, 60$$^{circ}$$, 75$$^{circ}$$, and 90$$^{circ}$$ using the neutron-detection system constituting of liquid organic scintillators. The angular distributions of neutron yields and effective doses around the phantom were obtained by integrating the double-differential neutron yields and applying the fluence-to-effective dose conversion coefficients. The experimental data were compared with results of the Monte-Carlo simulation code PHITS. The PHITS results showed good agreement with the measured data. From the results, we concluded that the PHITS simulation is applicable to the dose estimation at carbon-therapy facilities.

Journal Articles

Overview of JENDL-4.0/HE and benchmark calculations

Kunieda, Satoshi; Iwamoto, Osamu; Iwamoto, Nobuyuki; Minato, Futoshi; Okamoto, Tsutomu; Sato, Tatsuhiko; Nakashima, Hiroshi; Iwamoto, Yosuke; Iwamoto, Hiroki; Kitatani, Fumito; et al.

JAEA-Conf 2016-004, p.41 - 46, 2016/09

Neutron- and proton-induced cross-section data are required in a wide energy range beyond 20 MeV, for the design of accelerator applications. New evaluations are performed with recent knowledge in the optical and pre-equilibrium model calculations. We also evaluated cross-sections for p+$$^{6,7}$$Li and p+$$^{9}$$Be which have been highly requested from a medical field. The present high-energy nuclear data library, JENDL-4.0/HE, includes evaluated cross-sections for incident neutrons and protons up to 200 MeV (for about 130 nuclei). We overview substantial features of the library, i.e., (1) systematic evaluation with CCONE code, (2) challenges for evaluations of light nuclei and (3) inheritance of JENDL-4.0 and JENDL/HE-2007. In this talk, we also focus on the results of benchmark calculation for neutronics to show performance of the present library.

Journal Articles

Evaluation of neutron nuclear data on xenon isotopes

Rashid, M. M.*; Shigyo, Nobuhiro*; Ishibashi, Kenji*; Iwamoto, Nobuyuki; Iwamoto, Osamu

Journal of Nuclear Science and Technology, 53(9), p.1310 - 1320, 2016/09

 Percentile:100(Nuclear Science & Technology)

The neutron cross sections for stable Xe isotopes were calculated by nuclear reaction model code, CCONE and then compared with experimental information. The evaluation was made in the energy region from 1 keV to 20 MeV. The coupled-channels optical model was used to calculate the total cross section. The contributions of preequilibrium and direct processes in the statistical model calculations were considered to obtain reaction cross sections, $$gamma$$-ray and particle emission spectra. The present evaluation can reasonably explain the experimental data of total, capture, ($$n,2n$$), ($$n,p$$) and ($$n,alpha$$) reactions. The obtained capture cross sections for $$^{124,126}$$Xe are smaller than the data of JENDL-3.2 in the energy region where the neutron spectrum of YAYOI has a large contribution. Hence, these results could improve the overestimation of C/E values found by the YAYOI experiment. The evaluated total ($$n,2n$$) reaction cross section of $$^{136}$$Xe is in good agreement with experimental data. Therefore, the present data of $$^{136}$$Xe could provide relevant ones for KamLAND-Zen and EXO experiments.

Journal Articles

Evaluation of neutron nuclear data on krypton isotopes

Rashid, M. M.*; Shigyo, Nobuhiro*; Ishibashi, Kenji*; Iwamoto, Nobuyuki; Iwamoto, Osamu

JAEA-Conf 2015-003, p.319 - 324, 2016/03

Neutron nuclear data of krypton isotopes have been evaluated in the incident neutron energy range from 1 keV to 20 MeV by using theoretical nuclear reaction model code CCONE. The phenomenological optical model potential was employed to calculate total reaction cross section for natural krypton. This calculation is based on the coupled channel method. However, optical potential parameters were obtained by best fitting the calculation result with experimental total cross section of natural krypton. The transmission coefficients were calculated which was used for getting the cross sections in outgoing reaction channels. Compound, pre-equilibrium, and direct reaction processes were taken into consideration for cross section calculation. The present calculation results were compared with the experimental data and major evaluated nuclear data libraries. It is observed that the present evaluation can explain the experimental data reasonably well.

Journal Articles

Measurement of neutron production cross sections from heavy ion induced reaction

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Imabayashi, Yoichi*; Itashiki, Yutaro*; Satoh, Daiki; Kajimoto, Tsuyoshi*; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*; et al.

JAEA-Conf 2014-002, p.81 - 87, 2015/02

Cancer therapy using heavy ion beam has been adopted as highly advanced medical treatment by reason of its clinical advantages. It has become more important to estimate the risk of secondary cancer from recent survey. During treatment, secondary particles such as neutrons and -rays are producedby heavy ion induced nuclear reactions in a patient body as well as beam delivery apparatuses. For the risk assessment of secondary cancer, it is essential to know contribution of secondary neutrons by extra dose to organs in the vicinity of the irradiated tumor because the secondary neutron has a long flight path length and gives undesired dose to normal tissues in a wide volume. The experimental data of neutron energy spectra are required for dose estimations with high accuracy. Especially, precise data around neutron energy of 1 MeV is required because neutron of the energy region has a large relative biological eectiveness. Estimation of the secondary neutron yield data is important for estimation of radiation safety on both of workers and public in treatment facilities.

Journal Articles

Measurement of proton, deuteron, and triton production double differential cross sections on carbon by 290 MeV/nucleon Ar ions

Kajimoto, Tsuyoshi*; Hashiguchi, Taro*; Shigyo, Nobuhiro*; Satoh, Daiki; Uozumi, Yusuke*; Song, T. Y.*; Lee, C. W.*; Kim, J. W.*; Yang, S. C.*; Koba, Yusuke*; et al.

JAEA-Conf 2014-002, p.127 - 132, 2015/02

Particle transport Monte Carlo codes such as PHITS, FLUKA and so on are used for radiation safety design of high energy accelerators. The validity of code is con rmed by comparison with many experimental data. In this study, we report proton, deuteron, and triton production double differential cross sections (DDXs) from a graphite target by 290 MeV/nucleon Ar ions. The measured spectra are compared with those calculated by PHITS and FLUKA codes.

Journal Articles

Measurements and parameterization of neutron energy spectra from targets bombarded with 120 GeV protons

Kajimoto, Tsuyoshi*; Shigyo, Nobuhiro*; Sanami, Toshiya*; Iwamoto, Yosuke; Hagiwara, Masayuki*; Lee, H. S.*; Soha, A.*; Ramberg, E.*; Coleman, R.*; Jensen, D.*; et al.

Nuclear Instruments and Methods in Physics Research B, 337, p.68 - 77, 2014/10

 Times Cited Count:3 Percentile:61.51(Instruments & Instrumentation)

The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30, 45, 120, and 150$$^{circ}$$. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16-36% of the experimental yields and those calculated with FLUKA code were 26-57% of the experimental yields for all targets and emission angles.

Journal Articles

Measurement of 100- and 290-MeV/A carbon incident neutron production cross sections for carbon, nitrogen and oxygen

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Takamiya, Masanori*; Hashiguchi, Taro*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; et al.

Nuclear Data Sheets, 119, p.303 - 306, 2014/05

 Percentile:100(Physics, Nuclear)

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. We have measured the neutron yields from carbon ion incidence on carbon, nitrogen and oxygen targets in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with 100- and 290-MeV/u.

Journal Articles

Measurement of neutron yields from a water phantom bombarded by 290 MeV/u carbon ions

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Hirabayashi, Keiichi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

Progress in Nuclear Science and Technology (Internet), 4, p.709 - 712, 2014/04

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of the secondary neutrons yields data is essential for assessment of radiation safety on both of workers and public in treatment facilities. Neutron energy spectra from a water phantom simulating the patient body were obtained at GSI only for forward directions. We measured the neutron yields from carbon ion incident on a water phantom in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with the therapeutic ion energy.

Journal Articles

Measurement of 100 MeV/u carbon incident neutron production cross sections on a carbon target

Shigyo, Nobuhiro*; Uozumi, Yusuke*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*

JAEA-Conf 2013-002, p.137 - 142, 2013/10

Heavy ion cancer therapy has been increased by reason of its clinical advantages. During the treatment, the secondary particles such as neutron and $$gamma$$-ray are produced by nuclear reactions of a heavy ion incidence on a nucleus in a patient body. Estimation of double differential cross sections of secondary neutron is important to risk assessment of extra dose to organs in the vicinity of the irradiated tumor. Accurate data in neutron energy around 1 MeV is required because neutron in the energy region has large relative biological effectiveness. Neutron double differential cross sections by inducing 290 MeV/u carbon ion to bio-elements have been obtained experimentally. In order to have knowledge of neutron production by deceleration carbon in a human body, we measured the neutron yields from carbon ion incidence on a carbon target of neutron energy below 1 MeV in wide angular range from 15$$^{circ}$$ to 90$$^{circ}$$ with 100 MeV/u.

Journal Articles

Measurement of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Mizuno, Takafumi*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; Matsufuji, Naruhiro*; et al.

HIMAC-140, p.234 - 235, 2013/08

In the heavy-ion radiotherapy, considerable discussion has been attracted regarding the potential for second cancer induction by secondary neutrons produced from the primary heavy-ion fragmentation. We have started new measurements at 100 MeV/u to investigate the neutron production by heavy ions decelerating in a patient body.

Journal Articles

Measurement of thick target neutron energy spectra at 15$$^{circ}$$ and 90$$^{circ}$$ bombarded with 120-GeV protons

Iwamoto, Yosuke; Sanami, Toshiya*; Kajimoto, Tsuyoshi*; Shigyo, Nobuhiro*; Hagiwara, Masayuki*; Lee, H. S.*; Soha, A.*; Ramberg, E.*; Coleman, R.*; Jensen, D.*; et al.

Progress in Nuclear Science and Technology (Internet), 3, p.65 - 68, 2012/10

Neutron energy spectra at 15$$^{circ}$$ and 90$$^{circ}$$ produced from carbon, aluminum, copper and tungsten targets bombarded with 120-GeV protons were measured at Fermilab Test Beam Facility (FTBF) for the validation of simulation codes. The target thicknesses were 60 cm for graphite, 50 cm for aluminum, 20, 40, and 60 cm for copper and 10 cm for tungsten, respectively. The neutron time-of-flight measurements were performed using an NE213 organic liquid scintillator at 5.2 m for 90$$^{circ}$$ and 8.0 m for 15$$^{circ}$$ measuring from the center of the target to the surface of the detector. The raw signals (waveforms) obtained from photomultiplier tubes were recorded using the 10 bit digitizer (Agilent-acqiris DC282) with 0.5 ns sampling and 500 ns duration. To compare the experimental results, Monte Carlo calculations with the PHITS, MARS and FLUKA codes were performed. It was found that these calculated results underestimate the experimental results in the whole energy range.

Journal Articles

Evaluation of $$gamma$$-ray and neutron energy for area monitoring system in the IFMIF/EVEDA accelerator building

Takahashi, Hiroki; Maebara, Sunao; Sakaki, Hironao; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; Watanabe, Yukinobu*; Sagara, Kenshi*

Fusion Engineering and Design, 87(7-8), p.1235 - 1238, 2012/08

 Percentile:100(Nuclear Science & Technology)

The Engineering Validation of the IFMIF/EVEDA prototype accelerator, up to 9 MeV by supplying the deuteron beam of 125 mA, will be performed at the BA site in Rokkasho. A design of this area monitoring system, comprising of Si semiconductors and ionization chambers for covering wide energy spectrum of $$gamma$$-rays and $$^{3}$$He counters for neutrons, is now in progress. To establish an applicability of this monitoring system, photon and neutron energies have to be suppressed to the detector ranges of 1.5 MeV and 15 MeV, respectively. For this purpose, the reduction of neutron and photon energies throughout shield of water in a beam dump and concrete layer is evaluated by PHITS code, using the experimental data of neutron source spectra. In this article, a similar model using the beam dump structure and the position with a degree of leaning for concrete wall in the accelerator vault is used, and their energy reduction including the air is evaluated.

Journal Articles

Measurements of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Kajimoto, Tsuyoshi*; Hirabayashi, Keiichi*; Uehara, Haruhiko*; Nishizawa, Tomoya*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; et al.

HIMAC-138, p.237 - 238, 2012/08

In the heavy-ion radiotherapy, considerable discussion has been attracted regarding the potential for second cancer induction by secondary neutrons produced from the primary heavy-ion fragmentation. It is important to measure energy-angle double-differential cross sections (DDXs) of neutron- and photon-productions in heavy-ion nuclear reactions. Since it is notoriously hard to measure the spectral cross sections of neutrons in an energy range of around 1 MeV where the RBE value reaches at its maximum. In the project by last year, experiments were carried out at the synchrotron HIMAC of NIRS, Japan. The beams were $$^{12}$$C and $$^{16}$$O of 290 MeV/u and bombarded a carbon target. In measurements of neutrons and photons were used liquid scintillator detectors of 5" and 2". We have succeeded to lower the neutron energy threshold down to 0.6 MeV. The present results for neutron productions are in reasonable agreements with PHITS. Since our goal in technical aspects has been fulfilled, measurements will be continued for other reactions.

Journal Articles

Measurement of neutron- and photon-production cross sections from heavy-ion reactions on tissue equivalent elements

Uozumi, Yusuke*; Shigyo, Nobuhiro*; Kajimoto, Tsuyoshi*; Moriguchi, Daisuke*; Ueyama, Masahiko*; Yoshioka, Masakatsu*; Satoh, Daiki; Sanami, Toshiya*; Koba, Yusuke*; Takada, Masashi*; et al.

HIMAC-136, p.248 - 249, 2011/11

no abstracts in English

Journal Articles

Design of $$gamma$$-ray and neutron area monitoring system for the IFMIF/EVEDA accelerator building

Takahashi, Hiroki; Maebara, Sunao; Kojima, Toshiyuki; Kubo, Takashi; Sakaki, Hironao; Takeuchi, Hiroshi; Shidara, Hiroyuki; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; et al.

Fusion Engineering and Design, 86(9-11), p.2795 - 2798, 2011/10

 Times Cited Count:1 Percentile:86.64(Nuclear Science & Technology)

In the IFMIF/EVEDA accelerator, the engineering validation up to 9 MeV by employing the deuteron beam of 125 mA are planning at the BA site in Rokkasho, Aomori, Japan, the personnel protection system (PPS) is indispensable. The PPS inhibit the beam by receiving the interlock signal from the $$gamma$$-ray and neutron monitoring system. The $$gamma$$-ray and neutron detection level which is planned to be adopted are "80 keV to 1.5 MeV ($$gamma$$-ray)" and "0.025 eV to 15 MeV (neutron)". For the present shielding design, it is absolutely imperative for the safety review to validate the shielding ability which makes detection level lower than these $$gamma$$-ray and neutron detector. For this purpose, the energy reduction of neutron and photon for water and concrete is evaluated by PHITS code. From the calculating results, it is found that the photon energy range extended to 10 MeV by water and concrete shielding material only, an additional shielding to decrease the photon energy of less than 1.5 MeV is indispensable.

Journal Articles

Activation analyses by the beam losses in the IFMIF/EVEDA accelerator

Maebara, Sunao; Takahashi, Hiroki; Sakaki, Hironao; Hirabayashi, Keiichi*; Hidaka, Kosuke*; Shigyo, Nobuhiro*; Watanabe, Yukinobu*; Sagara, Kenshi*

JAEA-Conf 2011-002, p.199 - 204, 2011/09

58 (Records 1-20 displayed on this page)