Refine your search:     
Report No.
 - 
Search Results: Records 1-16 displayed on this page of 16
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of space solar sheet with inverted triple-junction cells

Yamaguchi, Hiroshi*; Ijichi, Ryo*; Suzuki, Yoshiyuki*; Ooka, Sachiyo*; Shimada, Keiji*; Takahashi, Naoki*; Washio, Hidetoshi*; Nakamura, Kazuyo*; Takamoto, Tatsuya*; Imaizumi, Mitsuru*; et al.

Proceedings of 42nd IEEE Photovoltaic Specialists Conference (PVSC-42) (CD-ROM), p.2407 - 2411, 2015/06

Journal Articles

High-speed classification of coherent X-ray diffraction Patterns on the K computer for high-resolution single biomolecule imaging

Tokuhisa, Atsushi*; Arai, Junya*; Jochi, Yasumasa*; Ono, Yoshiyuki*; Kameyama, Toyohisa*; Yamamoto, Keiji*; Hatanaka, Masayuki*; Gerofi, B.*; Shimada, Akio*; Kurokawa, Motoyoshi*; et al.

Journal of Synchrotron Radiation, 20(6), p.899 - 904, 2013/11

 Times Cited Count:5 Percentile:29.09(Instruments & Instrumentation)

JAEA Reports

Interdisciplinary approach to improve and systematize the investigation and evaluation techniques on geological environment in relation to radioactive waste repository; Japanese fiscal year, 2010 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Hidekazu*; Ogata, Nobuhisa; et al.

JAEA-Research 2011-033, 126 Pages, 2012/02

JAEA-Research-2011-033.pdf:31.33MB

The next advancements for the research of radioactive waste repository was started to improve and systematize the investigation and evaluation techniques on geological environment in consideration of intra-field of science and technology. Intra-field means the various fields among each study area of (a) geological environment, (b) design and engineering, (c) safety evaluation for radioactive waste repository, here. The following items were studied and discussed this year. (1) To Reconstruct Near Field (NF) Concept in consideration of coupled phenomena on geological environment. (2) To develop systematic investigation techniques on the geological environment in consideration of intra-field among each study area above mentioned (a), (b) and (c). Regarding (1), examination of NF concept focused on the realistic crystalline rock was carried out. Also through the overall discussion in the committee, comments from the all commissioners in relation to the intra-field of their study area were made to reflect on reconstruction of NF concept. Regarding (2), the research and development in consideration of NF and intra-field among each study area were conducted.

JAEA Reports

Study on systemizing of technology for investigation and analysis of the deep underground geological environment; Japanese fiscal year, 2009 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Hidekazu*; Ogata, Nobuhisa; et al.

JAEA-Research 2010-049, 282 Pages, 2011/02

JAEA-Research-2010-049.pdf:29.88MB

This report summarizes studies that have been carried out with the aim of assessing and systemizing the technology used for the investigation and analysis of the deep underground geological environment in relation to the disposal of radioactive waste. The main studies were: (1) a study on the research and development (R&D) topics proven to have practical application for the investigation, and analysis and understanding of the deep underground geological environment, and, (2) a study on leading edge technology that can provide the advanced technical basis for the investigation, analysis and understanding of the deep underground geological environment. Regarding the R&D topics (1, above), specific investigations, measurements, numerical analyses and chemical analyses were performed and reviewed with respect to the topics, (a) Repository design, engineering technology (b) Geological environment and (c) Safety evaluation. Based on the result of the review, topics requiring collaboration research in overlapping research fields, including safety assessment, were identified. Also, the near field concept (NFC) was reconsidered in terms of its realistic construction model. Regarding advanced technology (2, above), based on the objectives of the JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R&D results and detailed research result at the research site and thus an assessment of the need for advanced technical basis for investigation and analysis. This study contributed to the R&D development and its practical application.

JAEA Reports

Study on systemizing of technology for investigation and analysis of the deep underground geological environment; Japanese fiscal year 2008 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Hidekazu*; Ogata, Nobuhisa; et al.

JAEA-Research 2009-055, 145 Pages, 2010/02

JAEA-Research-2009-055.pdf:55.53MB

This report summarizes studies that were carried out with the aim of assessing and systemizing the technology used for the investigation and analysis of the deep underground geological environment in relation to the disposal of radioactive waste. The main studies were: (1) a study on the research and development (R&D) topics proven to have practical application for the investigation, analysis and understanding of the deep underground geological environment, and, (2) a study on leading edge technology that can provide the advanced technical basis for the investigation, analysis and understanding of the deep underground geological environment. The principal results obtained from the studies are as follows: Regarding the R&D topics (1, above), the specific investigations, measurements, numerical and chemical analyses were reviewed with respect to engineering technology and the geological environment in this year. Based on the results of the review, topics requiring collaboration research in overlapping research fields, including safety assessment, were identified. Also, the near field concept (NFC) was reconsidered in terms of both the generic model and for crystalline rock. Regarding advanced technology (2, above), based on the objectives of the JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R&D results and detailed research result at the research site and thus an assessment of the need for advanced technical basis for investigation and analysis. This study contributed to the R&D development and its practical application.

Journal Articles

Numerical study of the ripple resonance diffusion of alpha particles in tokamaks

Mimata, Hideyuki*; Tani, Keiji*; Tsutsui, Hiroaki*; Tobita, Kenji; Iio, Shunji*; Shimada, Ryuichi*

Plasma and Fusion Research (Internet), 4, p.008_1 - 008_8, 2009/04

The energy dependence of the diffusion coefficients of alpha particles in rippled magnetic fields of tokamaks are numerically investigated with an orbit following Monte Carlo code. The diffusion coefficients are enhanced around the ripple resonance energy while they are reduced and has a minimum near the resonance energy, and hence they have an M-shaped dependence on the energy. The ripple resonance is caused by a radial change of the toroidal precession of banana particles, and creates islands in the phase space related with the toroidal and poloidal angles. Since the particles outside the separatrix mainly contribute to the diffusion, the M-shaped energy dependence is explained by both island structure and initial distribution of particles in the phase space. Such a ripple resonant diffusion is dominant for fusion-produced alpha particles in the slowing down process.

JAEA Reports

Study on systemizing technology on investigation and analysis of deep underground geological environment; Japanese fiscal year, 2007 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Hidekazu*; Ogata, Nobuhisa; et al.

JAEA-Research 2008-099, 171 Pages, 2009/03

JAEA-Research-2008-099-1.pdf:28.65MB
JAEA-Research-2008-099-2.pdf:49.14MB

In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R&D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements, numerical and chemical analyses were performed particularly for research subjects: (a) the repository design and engineering technology and (b) geological environment. Based on the results on (1), (c) tasks of collaboration research on niche area between the research fields, including the safety assessment field, were selected. Also subject's items of the NFC (Near Field Concept) redefinition were discussed. Regarding (2), based on the extraction tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented with applying previous R&D results and detailed research at the research field was carried out. This study contributed to the R&D development for its practical application.

JAEA Reports

Study on systemizing technology on the investigation and analysis of deep underground geological environment; Japanese fiscal year, 2006 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Hidekazu*; Ogata, Nobuhisa; et al.

JAEA-Research 2008-042, 236 Pages, 2008/04

JAEA-Research-2008-042.pdf:23.43MB

The following study was done with the aim of systemizing the technology on the investigation and analysis to grasp deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R&D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis of the investigation and analysis of deep underground geological environment. It continued in the former year and got the following results. Concerning (1), the concrete investigation, measurements, numerical analyses and chemical analyses were enforced about the following item and extracted some subjects with the viewpoint of radioactive waste disposal. Concerning (2), the evaluation of the results and a way to the practical use were discussed on the R&D activities of the following item. The R&D activities of the study group concerning (2) are related to the fundamental and elemental technology. It was discussed if these results could be taken into the practical investigation programs which characterize the geological environment and engineering technology in the Tono Geoscience Center. The Study group also discussed and gave the comment on the 2nd phase (the shaft construction phase of the MIU (Mizunami Underground Research Laboratory) research program in the JAEA.

Journal Articles

Burn control simulation experiments in JT-60U

Shimomura, Koji*; Takenaga, Hidenobu; Tsutsui, Hiroaki*; Mimata, Hideyuki*; Iio, Shunji*; Miura, Yukitoshi; Tani, Keiji; Kubo, Hirotaka; Sakamoto, Yoshiteru; Hiratsuka, Hajime; et al.

Fusion Engineering and Design, 82(5-14), p.953 - 960, 2007/10

 Times Cited Count:3 Percentile:25.42(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Study on systemizing the technology on the investigation and analysis of deep underground geological environment; Japanese fiscal year, 2006 (Contract research)

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Hidekazu*; Ogata, Nobuhisa; et al.

JAEA-Research 2007-060, 210 Pages, 2007/09

JAEA-Research-2007-060-1.pdf:43.82MB
JAEA-Research-2007-060-2.pdf:41.2MB
JAEA-Research-2007-060-3.pdf:6.42MB

The following study was done with the aim of systemizing the technology on the investigation and analysis to grasp deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R&D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis of the investigation and analysis of deep underground geological environment. It continued in the former year and got the following results. Concerning (1), the concrete investigation, measurements, numerical analyses and chemical analyses were enforced about the following item and extracted some subjects with the viewpoint of radioactive waste disposal. More over, the way to make the co-operative program among each field of the following (a), (b) and (c) was discussed. (a) The subjects extracted with the viewpoint of the repository design and engineering technology. (b) The subject extracted with the viewpoint of the safety assessment. (c) The subjects extracted with the viewpoint of the geological environment. The joint research subjects among each field of (a), (b), (c) were also discussed. Concerning (2), the evaluation of the results and a way to the practical use were discussed on the R&D activities. The Study group also discussed and gave the comment on the 2nd stage of the MIU (Mizunami Underground Research Laboratory) research program in the JAEA.

Journal Articles

Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas

Fujioka, Shinsuke*; Nishimura, Hiroaki*; Nishihara, Katsunobu*; Sasaki, Akira; Sunahara, Atsushi*; Okuno, Tomoharu*; Ueda, Nobuyoshi*; Ando, Tsuyoshi*; Tao, Y.*; Shimada, Yoshinori*; et al.

Physical Review Letters, 95(23), p.235004_1 - 235004_4, 2005/12

 Times Cited Count:147 Percentile:95.57(Physics, Multidisciplinary)

no abstracts in English

JAEA Reports

Study on Systemizing the Technology on the Investigation and Analysis of Deep Underground Geological Environment, 2005

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*; Tochiyama, Osamu*; Yoshida, Eichi*

JNC TJ7400 2005-081, 337 Pages, 2005/02

JNC-TJ7400-2005-081.pdf:39.72MB

The following study was done in this year with the aim of syatemizing the technology on the investigation and analysis to grasp deep underground geological environment in relation to the radioactive waste disposal. The study to extract the research and development (R&D) subjects turned to the practical investigation and analysis of deep undergruound geological environment. The study on the advanced technical basis of the investigation and analysis of deep underground geological environment.

Journal Articles

Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams

Shimada, Yoshinori*; Nishimura, Hiroaki*; Nakai, Mitsuo*; Hashimoto, Kazuhisa*; Yamaura, Michiteru*; Tao, Y.*; Shigemori, Keisuke*; Okuno, Tomoharu*; Nishihara, Katsunobu*; Kawamura, Toru*; et al.

Applied Physics Letters, 86(5), p.051501_1 - 051501_3, 2005/01

 Times Cited Count:113 Percentile:94.31(Physics, Applied)

no abstracts in English

JAEA Reports

Study on Systemizing the Technology on the Investigation and Analysis of Deep Underground Geological Environment, 2003

Kojima, Keiji*; Onishi, Yuzo*; Watanabe, Kunio*; Nishigaki, Makoto*; Tosaka, Hiroyuki*; Shimada, Jun*; Aoki, Kenji*

JNC TJ7400 2004-008, 234 Pages, 2004/02

JNC-TJ7400-2004-008.pdf:11.02MB

The following was done in this year with the aim of systemizing the technology on the investigation and analysis to grasp deep underground geological environment in relation to the radioactive waste disposal. (1) The study to extract the research and development (R&D) subjects turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis of the investigation and analysis of deep underground geological environment. It continued in the former year and got the following results. Concerning (1), the concrete investigation, measurement and numerical / chemical analysis were enforced about the following item and extracted some subjects with the viewpoint of radioactive waste disposal. 1: The subjects extracted with the viewpoint of the repository design and engineering technology. *The evaluation technique of the excavation disturbed zone (EDZ) by acoustic emission (AE) or micro seismicity measurement. *Fracture sealing technique such as vibration grouting toward low permeable rock mass. 2: The subject extracted with the viewpoint of the safety assessment. *Precipitation of the metal hydroxide (non-crystallized) through migration process in rock mass and change to the crystallized oxide.3: The subjects extracted with the viewpoint of the geological environment. *Fracture distribution characteristics around the fault, it can think to meet in the underground facilities and the prediction of long term activities of the fault. *Natural sealing process by the secondary filling materials (iron oxide and carbonate etc.) in the fracture of rock mass and that influence which may be given to the long-term migration and release of nuclides. The advanced research subjects among the each field of 1, 2, 3 were also discussed. Concerning (2), the evaluation of the results and a way to the practical use were discussed on the R&D activities of the following item.

Oral presentation

Numerical analysis for burn control simulation in JT-60U

Shimomura, Koji*; Takenaga, Hidenobu; Tsutsui, Hiroaki*; Mimata, Hideyuki*; Iio, Shunji*; Miura, Yukitoshi; Tani, Keiji; Kubo, Hirotaka; Hiratsuka, Hajime; Ichige, Hisashi; et al.

no journal, , 

no abstracts in English

Oral presentation

Report from special research group on lessons on radiation protection after Fukushima-Daiichi NPP Accident

Kosako, Toshiso*; Tani, Kotaro*; Ogino, Haruyuki*; Iida, Takao*; Hattori, Takatoshi*; Oda, Keiji*; Omi, Tadashi*; Furuta, Sadaaki*; Murakami, Hironori*; Kasai, Atsushi*; et al.

no journal, , 

Two proposal notes were written by the Japan Health Physics Society in terms of the issues on radiation protection considering the arguments in many academic symposiums after the accident in TEPCO Fukushima-Daiichi NPP resulting from the Great East Japan Earthquake of March 11, 2011. These proposal notes were referred in some symposiums, and the follow-up activities are needed for collecting the chronological information after the Fukushima accident and for considering these proposal matter in detail. After the proposal notes were published, quite many activities for radiation protection were performed. In this professional workshop, the chronological information was collected and easily evaluated concerning with the proposal. In this presentation, the outcome was introduced.

16 (Records 1-16 displayed on this page)
  • 1