Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Niwa, Masakazu; Shimada, Akiomi; Asamori, Koichi; Sueoka, Shigeru; Komatsu, Tetsuya; Nakajima, Toru; Ogata, Manabu; Uchida, Mao; Nishiyama, Nariaki; Tanaka, Kiriha; et al.
JAEA-Review 2024-035, 29 Pages, 2024/09
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2024. The objectives and contents of this research are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.
Nishiyama, Nariaki; Nakajima, Toru; Goto, Akira*; Hakoiwa, Hiroaki; Nagata, Mitsuhiro; Shimada, Koji; Niwa, Masakazu
Earth and Space Science (Internet), 11(6), p.e2023EA003360_1 - e2023EA003360_15, 2024/06
Earthquakes with magnitudes of 6-7 have been reported even in various active tectonic settings where fault deformation topography have not been detected. Therefore, delineating concealed active faults generating such earthquakes is necessary to reduce earthquake damage; however, few studies exist to provide its clues regarding such faults. The 1984 Western Nagano Earthquake in Japan was a main shock with a magnitude of Mj 6.8 and a depth of 2 km at the source. Solid bedrocks are well-exposed in the earthquake source region; however, no surface rupture have been identified, and the active fault is known to be concealed. In this study, we collected data on striations observed in fractures by geological survey around the source area of the 1984 Western Nagano Earthquake. Using the collected data, the multiple inverse method was used to estimate the stresses that affected the striation formation. Consequently, stresses similar to acting faults in this area were detected in minor faults around the known concealed active fault. This suggests that the minor faults might be part of the damage zone that has been developed around the concealed active fault. Some minor faults were recognized in Quaternary volcanic rocks, confirming that they experienced displacements recently. This study indicates the possibility of detecting concealed active faults in the bedrock by geological survey.
Sakai, Toru*; Kametaka, Masao*; Aoki, Kazuhiro; Shimada, Koji; Takagi, Hideo*
Chishitsugaku Zasshi (Internet), 130(1), p.89 - 109, 2024/04
Shear planes are formed in various orientations within fault fracture zones. The sense of shear on each shear plane can be determined from the composite planar fabrics developed around it. However, it is not possible to distinguish whether all the shear planes in a fault fracture zone were formed during the same stage of motion by observations alone, because of the scarcity of chronological data. As such, we attempted to determine the kinematic and stress histories of the Shionohira and Kuruma faults by using both observations of composite planar fabrics and stress inversion analysis. As a result, we identified five stages of motion on the Shionohira Fault and two stages of motion on the Kuruma Fault. The chronological data are not sufficient to constrain the timing of the stages, but the reconstructed histories are consistent with the paleostress fields and tectonic activity around these faults, as determined in previous studies. Although the reconstructed stress history depends on the density of fault-slip data from the measurement area, this method is effective for investigating the formation mechanisms of fault fracture zones.
Fujita, Natsuko; Miyake, Masayasu; Matsubara, Akihiro*; Ishii, Masahiro*; Watanabe, Takahiro; Jinno, Satoshi; Nishio, Tomohiro*; Ogawa, Yumi; Kimura, Kenji; Shimada, Akiomi; et al.
Dai-35-Kai Tandemu Kasokuki Oyobi Sono Shuhen Gijutsu No Kenkyukai Hokokushu, p.17 - 19, 2024/03
The JAEA-AMS-TONO facility at the Tono Geoscience Center, JAEA has three accelerator mass spectrometers. We report the present status of the JAEA-AMS-TONO.
Yamamoto, Yusuke*; Watanabe, Takahiro; Niwa, Masakazu; Shimada, Koji
JAEA-Testing 2023-003, 67 Pages, 2024/02
A long-term geosphere stability for geological disposal is evaluated by the past geological environmental changes and modern conditions. Stable hydrogen and oxygen isotope ratios (D, O) of geological samples are useful information to estimate the past environmental changes and modern conditions. Recently, the thermal conversion elemental analyzer and isotope ratio mass spectrometer (TC-EA/IRMS) were installed in the Tono Geoscience Center for D and O measurements of geological samples. In this study, we reported analytical methods of D and O using international standard reference materials. In addition, evaluation tests of uncertainty by repeated analyses of the standards were performed using the TC-EA/IRMS. Furthermore, the D and O analyses by the TC- EA/IRMS were also applied to fault rock samples.
Niwa, Masakazu; Shimada, Koji; Terusawa, Shuji*; Goto, Akira*; Nishiyama, Nariaki; Nakajima, Toru; Ishihara, Takanori; Hakoiwa, Hiroaki
Island Arc, 33(1), p.e12516_1 - e12516_16, 2024/02
Times Cited Count:0 Percentile:0.01(Geosciences, Multidisciplinary)To investigate the geological evidence of near-surface crustal deformations in a high-strain shear zone that has been geodetically identified but not associated with clear tectonic landforms, a fieldwork was conducted in E-W trending southern Kyushu high-strain shear zone, Japan. According to our study, an investigation based on the slip data from minor faults and the occurrences of fracture zones could help to identify a concealed fault that is small in terms of size to record tectonic landforms but can trigger large earthquakes.
Ogawa, Hiroki; Hiratsuka, Shinya; Asamori, Koichi; Shimada, Koji; Niwa, Masakazu
Butsuri Tansa, 77, p.15 - 23, 2024/00
Understanding pathways of volcanic fluids or non-volcanic slab-related fluids by means of investigations from the surface is effective for preventing the loss of the function as a natural barrier in the geological disposal system of high-level radioactive waste. There are few long active faults and is no record of remarkable groundwater discharge in the fore-arc region of Kyushu, Japan. However, previous studies on seismic wave velocity and resistivity structures suggest the existence of the zones of slab-related fluids derived from the Philippine Sea Plate in the crust. To associate pathways of fluids in the fore-arc region of Kyushu with distribution and properties of cracks, we applied a shear wave splitting analysis to waveform data of shallow earthquakes in this region. In the inland part of Kyushu, the orientation of the faster polarized shear wave is subparallel to the axes of the maximum horizontal compressional stress, which can attribute the shear wave polarization anisotropy mainly to the distributions of cracks aligned along the crustal stress. The faster polarized shear wave at the seismic stations in the coastal area of Hyuganada Sea shows the orientation of NNE-SSWNE-SW or NNW-SSENW-SE different from that of the crustal stress. The average intensity of anisotropy over the ray-path length from hypocenters to each seismic station is also calculated. As a result, a few ray paths acquired at the seismic station TAKAZA to the east of Kirishima Volcano show larger anisotropic intensity, 5.6-7.0%. There is no denying the possibility that these ray paths reflect the pathways of the hydrothermal fluids. In the coastal area of Hyuganada Sea, however, it is confirmed that we do not obtain the ray paths that indicate continuous fluid pathways extending from hypocenters to each seismic station because the anisotropic intensity over the ray-path length is less than 5%.
Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Fujita, Natsuko; Yokoyama, Tatsunori; Ogita, Yasuhiro; Fukuda, Shoma; Nakajima, Toru; Kagami, Saya; Ogata, Manabu; et al.
JAEA-Review 2023-017, 27 Pages, 2023/10
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2023. The objectives and contents in fiscal year 2023 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.
Niwa, Masakazu; Shimada, Koji; Sueoka, Shigeru; Ishihara, Takanori; Ogawa, Hiroki; Hakoiwa, Hiroaki; Watanabe, Tsuyoshi; Nishiyama, Nariaki; Yokoyama, Tatsunori; Ogata, Manabu; et al.
JAEA-Research 2023-005, 78 Pages, 2023/10
This annual report documents the progress of research and development (R&D) in the 1st fiscal year of the Japan Atomic Energy Agency 4th Medium- and Long-term Plan (fiscal years 2022-2028) to provide the scientific base for assessing geosphere stability for long-term isolation of high-level radioactive waste. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.
Nakanishi, Takumi*; Hori, Yuta*; Shigeta, Yasuteru*; Sato, Hiroyasu*; Kiyanagi, Ryoji; Munakata, Koji*; Ohara, Takashi; Okazawa, Atsushi*; Shimada, Rintaro*; Sakamoto, Akira*; et al.
Journal of the American Chemical Society, 145(35), p.19177 - 19181, 2023/08
Times Cited Count:1 Percentile:39.98(Chemistry, Multidisciplinary)Kokubu, Yoko; Utsumi, Yoshinori*; Ito, Saburo*; Shimada, Koji
Dai-23-Kai AMS Shimpojiumu Hokokushu, p.60 - 63, 2022/12
In the case of estimating erosion rates of ground surfaces from measurement of beryllium-10 and aluminum-26, quartz contained in rocks and sediments is used as a measurement sample. In this paper, we present an example of separating quartz using a cell handler, which is a cell separation system, without chemical treatment using hydrofluoric acid. By optimizing the way to apply light to the mineral sample with the cell handler and the exposure time of the camera of the cell handler, quartz and other minerals, such as feldspar, were able to be distinguished from other minerals, such as feldspar in image recognition. An experimental measurement using rock samples was then performed under these conditions. As a result, only quartz was successfully separated through a fully automatized process by that distinguishes and picks quartz using the image recognition software and picking system built into the cell handler.
Sasao, Eiji; Ishimaru, Tsuneari; Niwa, Masakazu; Shimada, Akiomi; Shimada, Koji; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.
JAEA-Review 2022-022, 29 Pages, 2022/09
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2022. The objectives and contents in fiscal year 2022 are described in detail based on the JAEA 4th Medium- and Long-term Plan (fiscal years 2022-2028). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques
Niwa, Masakazu; Shimo, Michito*; Shimada, Koji; Goto, Akira
JAEA-Research 2022-004, 38 Pages, 2022/06
Methane (CH) seepage to the surface in the early stage of hydrocarbon exploration has attracted increasing attention. Also, detection of CH-rich fluid emission can be applied to reconnaissance surveys for safety management in geological disposal of radioactive waste because high-temperature fluids that come from slab dehydration along a subduction zone are often rich in CH. These fluids likely migrate along faults and fractures. In this study, we employed a portable analyzer that used a wavelength-scanned cavity ring-down spectroscopy (CRDS) with high accuracy (in ppb levels) and short measurement intervals (1 s). An on-vehicle measurement that employed the CRDS system was performed in the Hongu area in southeast Kii Peninsula, Japan, which included CH-bearing hot springs (Kawayu and Yunomine). The measurement near the hot springs detected a clear CH anomaly (2 ppm) that exceeded the background concentration. The estimation of CH diffusion in air based on the Gaussian plume model corresponded to the result of the on-vehicle measurement. This study confirmed that the method using the vehicle-mounted CRDS analyzer can help in quickly and easily identifying CH-bearing fluid emissions at the surface. Additionally, directions for use of the analyzer were summarized in this report.
Tateishi, Ryo*; Shimada, Koji; Iwamori, Akiyuki*; Wada, Shinya*; Seno, Shotaro*; Nagata, Ken*
Chishitsugaku Zasshi (Internet), 128(1), p.63 - 64, 2022/04
The Tsuruga Fault is an active right-lateral strike-slip fault that is about 20 km in length and distributed in the northeast-southwest direction from the eastern part of Tsuruga City to the southern part of Mihama Town, Fukui Prefecture. The Tsuruga fault borders the Jurassic accretionary complex (mixed rock) and the late Cretaceous granite around the Oritodani area in the Shinjo district of Mihama-cho. Lateral bendings of valleys along the fault in this area are clear geomorphological signatures of fault activity. We briefly report newly found multiple fault outcrops at these bending points with photos of them. This research is the result of joint research by Kansai Electric Power Company, University of Toyama, and JAEA.
Chen, J.*; Yoshida, Kenta*; Suzudo, Tomoaki; Shimada, Yusuke*; Inoue, Koji*; Konno, Toyohiko*; Nagai, Yasuyoshi*
Materials Transactions, 63(4), p.468 - 474, 2022/04
Times Cited Count:1 Percentile:14.88(Materials Science, Multidisciplinary)In situ electron irradiation using high-resolution transmission electron microscopy (HRTEM) was performed to visualize the Frank loop evolution in aluminium-copper (Al-Cu) alloy with an atomic-scale spatial resolution of 0.12 nm. The HRTEM observation along the [110] direction of the FCC-Al lattice, Frank partial dislocation bounding an intrinsic stacking fault exhibited an asymmetrical climb along the 112 direction opposed to those in the reference pure Al under an electron irradiation, with a corresponding displacement-per-atom rate of 0.055-0.120 dpa/s. The asymmetrical climb of the partial dislocation was described as pinning effects due to Cu-Cu bonding in Guinier-Preston zones by a molecular dynamics simulation.
Yamamoto, Yusuke; Watanabe, Takahiro; Niwa, Masakazu; Shimada, Koji
JAEA-Testing 2021-003, 58 Pages, 2022/01
A long term geosphere stability for geological disposal is evaluated by the past geological environmental changes and modern conditions. Whole-rock geochemical compositions in rocks and sediments are useful information to estimate the past environmental changes and modern conditions. Recently, the portable X-ray fluorescence (XRF) were installed in the Tono Geoscience Center for rapid and simple whole-rock geochemical analyses (original specification; 8 mm-diameter analysis). In particular, the 3 mm-diameter small spot analysis using the portable XRF was performed for quantitative analyses of small-weight geological samples. In this study, we reported a quantitative method for major and trace elements using calibration curves by standard reference materials, as well as evaluation tests of uncertainty by repeated analyses of the standards measured by the portable XRF (3 mm-diameter small spot analysis). Furthermore, the small spot quantitative analyses by the portable XRF were also applied to fault rock samples that have been analyzed in previous studies.
Ishimaru, Tsuneari; Ogata, Nobuhisa; Kokubu, Yoko; Shimada, Koji; Niwa, Masakazu; Shimada, Akiomi; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; et al.
JAEA-Research 2021-007, 65 Pages, 2021/10
This annual report documents the progress of research and development (R&D) in the 6th fiscal year during the JAEA 3rd Mid- and Long-term Plan (fiscal years 2015-2021) to provide the scientific base for assessing geosphere stability for long-term isolation of the high-level radioactive waste. The planned framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques. The current status of R&D activities with previous scientific and technological progress is summarized.
Shimada, Koji; Goto, Akira; Niwa, Masakazu; Shimo, Michito*
Chishitsugaku Zasshi, 127(10), p.I - II, 2021/10
Continuous leaking point of high-temperature fluid (liquid/gas) from underground can be easily grasped by infrared images. We show images confirmed by a FLIR C5 camera that can simultaneously obtain an infrared image and a visible light image at the outcrops of Kawayu Onsen that naturally spring along the river. Outcrops and river surface temperature rise due to hot springs that leaking from riverbanks and riverbeds, rock temperature rise around cracks where gas containing high-concentration methane leaks with hot springs, abandoned fluid pathway due to construction of the bank and damming river for hot spring river bath in winter can be confirmed at a glance. Infrared images may be useful for quick identification of hot fluid leaking points from underground.
Ishimaru, Tsuneari; Kokubu, Yoko; Shimada, Koji; Shimada, Akiomi; Niwa, Masakazu; Watanabe, Takahiro; Sueoka, Shigeru; Yokoyama, Tatsunori; Fujita, Natsuko; Ogita, Yasuhiro; et al.
JAEA-Review 2021-012, 48 Pages, 2021/08
This report is a plan of research and development (R&D) on geosphere stability for long-term isolation of high-level radioactive waste (HLW) in Japan Atomic Energy Agency (JAEA), in fiscal year 2021. The objectives and contents in fiscal year 2021 are described in detail based on the JAEA 3rd Medium- and Long-term Plan (fiscal years 2015-2021). In addition, the background of this research is described from the necessity and the significance for site investigation and safety assessment, and the past progress. The plan framework is structured into the following categories: (1) Development and systematization of investigation techniques, (2) Development of models for long-term estimation and effective assessment, (3) Development of dating techniques.
Tateishi, Ryo*; Shimada, Koji; Shimizu, Mayuko; Ueki, Tadamasa*; Niwa, Masakazu; Sueoka, Shigeru; Ishimaru, Tsuneari
Oyo Chishitsu, 62(2), p.104 - 112, 2021/06
We attempted to discriminate between active and non-active faults by linear discriminant analysis using the chemical composition data of fault gouges in Japan, and then examined the elements that represent the difference between them and better discriminants. As a result, the multiple discriminants obtained could discriminate between them with high probability. In addition, the generalization performance of these discriminants is discussed, and the discriminants that can be expected to have high discriminant performance for unknown samples are presented. Also, from the combination of elements common to these discriminants, we narrowed down the number of elements that represent the difference between active and non-active faults to 6, and showed that the combination of TiO and Sr contributing the most to the discrimination. The method applied in this study is an innovative one that can discriminate the activity by chemical analysis of fault rocks that are universally present in the bedrock.