Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Uchiyama, Yusuke*; Tokunaga, Natsuki*; Azuma, Kohei*; Kamidaira, Yuki; Tsumune, Daisuke*; Iwasaki, Toshiki*; Yamada, Masatoshi*; Tateda, Yutaka*; Ishimaru, Takashi*; Ito, Yukari*; et al.
Science of the Total Environment, 816, p.151573_1 - 151573_13, 2022/04
no abstracts in English
Yamamoto, Yusuke; Watanabe, Takahiro; Niwa, Masakazu; Shimada, Koji
JAEA-Testing 2021-003, 58 Pages, 2022/01
A long term geosphere stability for geological disposal is evaluated by the past geological environmental changes and modern conditions. Whole-rock geochemical compositions in rocks and sediments are useful information to estimate the past environmental changes and modern conditions. Recently, the portable X-ray fluorescence (XRF) were installed in the Tono Geoscience Center for rapid and simple whole-rock geochemical analyses (original specification; 8 mm-diameter analysis). In particular, the 3 mm-diameter small spot analysis using the portable XRF was performed for quantitative analyses of small-weight geological samples. In this study, we reported a quantitative method for major and trace elements using calibration curves by standard reference materials, as well as evaluation tests of uncertainty by repeated analyses of the standards measured by the portable XRF (3 mm-diameter small spot analysis). Furthermore, the small spot quantitative analyses by the portable XRF were also applied to fault rock samples that have been analyzed in previous studies.
Sanada, Yukihisa; Urabe, Yoshimi*; Misono, Toshiharu; Shiribiki, Takehiko; Nakanishi, Takahiro; Watanabe, Yusuke; Tsuruta, Tadahiko
Scientific Reports (Internet), 11(1), p.23175_1 - 23175_13, 2021/11
After the accident at the Fukushima Daiichi Nuclear Power Station (FDNPP) on March 15, 2011, a large amount of volatile radionuclides were released into the atmosphere and hydrosphere. Monitoring of radioactive cesium in sediments is important for assessing the behavior and effects of radioactive cesium in the environment. In this study, the distribution of radioactive cesium in the superficial deposits around FDNPP was visualized as a radioactive cesium map using regular survey data from a towed gamma-ray detection system.
Horiuchi, Yusuke; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Kida, Fukuka*; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 330(1), p.237 - 244, 2021/10
Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)Applicability of tetra2-ehylhexyl diglycolamide (TEHDGA) impregnated adsorbent for minor actinide (MA) recovery from high level liquid waste (HLLW) in extraction chromatography technology was investigated through batch-wise adsorption and column separation experiments. Distribution ratio of representative fission product elements were obtained by the batch-wise experiments, and TEHDGA adsorbent was shown to be preferable to TODGA adsorbent for decontamination of several species. All Ln(III) supplied into the TEHDGA adsorbent packed column was properly eluted from the column, and the applicability of the adsorbent was successfully showed by this study.
Mitsuguchi, Takehiro; Okabe, Nobuaki*; Yokoyama, Yusuke*; Yoneda, Minoru*; Shibata, Yasuyuki*; Fujita, Natsuko; Watanabe, Takahiro; Kokubu, Yoko
Journal of Environmental Radioactivity, 235-236, p.106593_1 - 106593_10, 2021/09
Times Cited Count:0 Percentile:0(Environmental Sciences)For a contribution to developing the usage of iodine-129 (I) as a tracer of deep-seated fluid,
I/
I and
C were measured for annual bands (AD 1931-1991) of a modern coral collected from Northwestern Australia; the measurements were performed using the JAEA-AMS-TONO-5MV for
I/
I and an AMS facility of the University of Tokyo for
C. Results indicate that both
I/
I and
C distinctly increase from 1950s. The
C increase can be ascribed to atmospheric nuclear tests, while the
I/
I increase is due to nuclear-fuel reprocessing as well as atmospheric nuclear tests. These results are in good agreement with previous studies, indicating that the
I/
I measurement by JAEA-AMS-TONO-5MV has been further developed.
Takeuchi, Ryuji; Onoe, Hironori; Murakami, Hiroaki; Watanabe, Yusuke; Mikake, Shinichiro; Ikeda, Koki; Iyatomi, Yosuke; Nishio, Kazuhisa*; Sasao, Eiji
JAEA-Review 2021-003, 63 Pages, 2021/06
The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline rock (granite) at Mizunami City, Gifu Prefecture, central Japan. On the occasion of JAEA reformation in FY2014, JAEA identified three remaining important issues on the geoscientific research program based on the synthesized latest results of research and development (R&D): "Development of countermeasure technologies for reducing groundwater inflow", "Development of modeling technologies for mass transport" and "Development of drift backfilling technologies". At the MIU, the R&D are being pursued with a focus on the remaining important issues from FY2015, and satisfactory results have been achieved. Based on this situation, the R&D on the MIU Project were completed at the end of FY2019. In this report, the results of R&D and construction activities of the MIU Project in FY2019 are summarized.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Aosai, Daisuke*; Hara, Naohiro*
JAEA-Data/Code 2020-012, 80 Pages, 2020/10
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2019. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2019-019, 74 Pages, 2020/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2018. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Mishima, Ria; Inaba, Yusuke*; Tachioka, Sotaro*; Harigai, Miki*; Watanabe, Shinta*; Onoe, Jun*; Nakase, Masahiko*; Matsumura, Tatsuro; Takeshita, Kenji*
Chemistry Letters, 49(1), p.83 - 86, 2020/01
Separation of platinum group metals (PGMs) from high-level liquid waste generated from the reprocessing of spent nuclear fuels is important to produce good quality vitrified glass for final disposal. A new sorbent, Aluminum hexacyanoferrate (AlHCF), was synthesized and the general sorption behavior of PGMs from concentrated nitric acid was examined. Nitric acid caused substantial elution of AlHCF but the sorption of Pd stabilized the structure. Consequently, Rh was sorbed in the presence of Pd, whereas single Rh sorption caused complete dissolution of AlHCF. Relation between sorbed mount of Pd vs eluted Al and Fe revealed that the elution ratio of Al and Fe was not the same as molar ratio of synthesized AlHCF, indicating the re-sorption of Fe resulted in formation of new structure. The sorption mechanism of PGMs by this new sorbent, AlHCF, not only the simple ion exchange, but also oxidation reduction reaction as well as kinetics play important rule. Understanding the general sorption and dissolution behavior will help improve the sorption performance of PGMs by AlHCF.
Watanabe, So; Senzaki, Tatsuya; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki; Nakatani, Kiyoharu*; Matsuura, Haruaki*; Horiuchi, Yusuke*; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 322(3), p.1273 - 1277, 2019/12
Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Arai, Takehiko*; Nakauchi, Yusuke*; Nakamura, Tomoki*; Matsuoka, Moe*; et al.
Science, 364(6437), p.272 - 275, 2019/04
Times Cited Count:140 Percentile:99.81(Multidisciplinary Sciences)The near-Earth asteroid 162173 Ryugu, the target of Hayabusa2 sample return mission, is believed to be a primitive carbonaceous object. The Near Infrared Spectrometer (NIRS3) on Hayabusa2 acquired reflectance spectra of Ryugu's surface to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micron was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally- and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Hayashida, Kazuki*; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2018-021, 76 Pages, 2019/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2017. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Iwatsuki, Teruki; Shibata, Masahito*; Murakami, Hiroaki; Watanabe, Yusuke; Fukuda, Kenji
Doboku Gakkai Rombunshu, G (Kankyo) (Internet), 75(1), p.42 - 54, 2019/03
In order to clarify the influence of shotcrete in the underground facility on the groundwater chemistry, an in-situ closed test was conducted in the mock-up tunnel at the depth of 500 m. Brucite, Ettringite, Ca(OH) , Gibbsite, K
CO
, Na
CO
10H
O, SiO
(a) and Calcite were identified as the dominant minerals affecting the water chemistry. Furthermore, the shotcrete constructed in the tunnel has a reaction capacity which can produce about 570 m
of alkaline groundwater (pH12.4) saturated with Ca(OH)
. The estimation would improve the accuracy of prediction analysis of the long-term chemical influence of cement materials after the closure of the tunnel.
Watanabe, Yusuke; Hayashida, Kazuki; Kato, Toshihiro; Kubota, Mitsuru; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2018-002, 108 Pages, 2018/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the effect of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2016 and 2014 to 2016, respectively. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Nagasu, Ryosuke*; Tanabe, Daijiro*; Yokotsuka, Satoshi*; Kumazawa, Noriyuki*; Ajiki, Takaya*; Aizawa, Yusuke*; Naganawa, Hirochika; Nagano, Tetsushi; Yanase, Nobuyuki*; Mitamura, Hisayoshi*; et al.
Kankyo Joka Gijutsu, 17(2), p.58 - 61, 2018/03
A new technology to suppress cesium migration from forests has been developed collaboratively by Ibaraki University, Kumagai-gumi Co., Ltd. and its group company, Technos, and JAEA. The new technology utilizes polyelectrolytes (polymers with electric charges) and clay minerals to control Cs migration with the aid of natural forces such as rainfall and rainwater runoff. In Imitate-mura, Fukushima, verification tests of the new technology have been performed and its effect on controlling Cs migration from forests to grass farm adjoining the forests has been proven.
Iwata, Takahiro*; Kitazato, Kohei*; Abe, Masanao*; Otake, Makiko*; Arai, Takehiko*; Arai, Tomoko*; Hirata, Naru*; Hiroi, Takahiro*; Honda, Chikatoshi*; Imae, Naoya*; et al.
Space Science Reviews, 208(1-4), p.317 - 337, 2017/07
Times Cited Count:33 Percentile:72.27(Astronomy & Astrophysics)NIRS3: The Near Infrared Spectrometer is installed on the Hayabusa2 spacecraft to observe the target C-type asteroid 162173 Ryugu at near infrared wavelengths of 1.8 to 3.2 micrometer. It aims to obtain reflectance spectra in order to detect absorption bands of hydrated and hydroxide minerals in the 3 micrometer-band. We adopted a linear-image sensor with indium arsenide (InAs) photo diodes and a cooling system with a passive radiator to achieve an optics temperature of 188 K, which enables to retaining sufficient sensitivity and noise level in the 3 micrometer wavelength region. We conducted ground performance tests for the NIRS3 flight model (FM) to confirm its baseline specifications. The results imply that the properties such as the signal-to-noise ratio (SNR) conform to scientific requirements to determine the degree of aqueous alteration, such as CM or CI chondrite, and the stage of thermal metamorphism on the asteroid surface.
Morales, A. I.*; Benzoni, G.*; Watanabe, H.*; Tsunoda, Yusuke*; Otsuka, T.*; Nishimura, Shunji*; Browne, F.*; Daido, R.*; Doornenbal, P.*; Fang, Y.*; et al.
Physics Letters B, 765, p.328 - 333, 2017/02
Times Cited Count:28 Percentile:94.69(Astronomy & Astrophysics)Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.
Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03
The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.
Honda, Fuminori*; Hirose, Yusuke*; Miyake, Atsushi*; Mizumaki, Masaichiro*; Kawamura, Naomi*; Tsutsui, Satoshi*; Watanuki, Tetsu; Watanabe, Shinji*; Takeuchi, Tetsuya*; Settai, Rikio*; et al.
Journal of Physics; Conference Series, 592(1), p.012021_1 - 012021_5, 2015/03
Times Cited Count:2 Percentile:65.76no abstracts in English
Tanabe, Yusuke*; Iwamoto, Takashi*; Takahashi, Junichi*; Nishikawa, Hiroyuki*; Sato, Takahiro; Ishii, Yasuyuki; Kamiya, Tomihiro
JAEA-Review 2012-046, JAEA Takasaki Annual Report 2011, P. 129, 2013/01