Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
伊藤 史哲*; Lee, J.; 弘中 浩太; 高橋 時音; 鈴木 敏*; 持丸 貴則*; 堀 順一*; 寺田 和司*; 小泉 光生
Nuclear Instruments and Methods in Physics Research A, 1064, p.169465_1 - 169465_9, 2024/07
被引用回数:0 パーセンタイル:0.00(Instruments & Instrumentation)The response of a gamma-ray spectrometer is generally determined by analyzing full-energy peaks. However, full-energy peaks cannot be measured easily in the case of scintillation detectors that consist of light elements, such as glass scintillators. Only a strong Compton plateau appears in the spectrum of such detectors. Therefore, Compton edgers were used to evaluate the response of these detectors. The response of a low-resolution Li-glass detector to gamma rays was measured for the first time by a coincidence method with a high-resolution LaBr:Ce detector using cascade gamma rays (2.75 and 1.37 MeV) from a Na source. Coincidence gates were applied at the peaks of the spectrum of the LaBr:Ce detector at the 0.51 MeV annihilation peak, and the sum peaks of a gamma ray and a backscattered gamma ray. By analyzing the gated spectra of the Li-glass detector, the energy-dependent detector response (i.e., the output strength and its dispersion) was determined.
Rossi, F.; Lee, J.; 児玉 有; 弘中 浩太; 小泉 光生; 堀 順一*; 寺田 和司*; 佐野 忠史*
Proceedings of 65th Annual Meeting of the Institute of Nuclear Materials Management (Internet), 8 Pages, 2024/07
Various non-destructive assay techniques are being used to verify different nuclear material. However, one of the difficulties of current NDA is the measurement of highly radioactive materials. Since 2015, the JAEA has been working on the development of various active non-destructive assay techniques to address some of the current challenges in nuclear safeguards. Among the various technologies proposed, the Neutron Resonance Analysis system combines signatures from NRTA, NRCA and the newly proposed NRFNA. The combination of those techniques can provide accurate information on the small fissile content in a sample. Neutrons are generated by a pulsed neutron source and slowed down into the moderator. Neutrons are collimated using lead and borated polyethylene to reach the sample, where various neutron-induced reactions occur. n/g PSD plastic scintillators are used to measure the captured gamma rays and fission neutrons at sample location. GS20 is used to collect the transmitted neutrons downstream of the source-sample beamline. A first measurement campaign was performed using natural uranium sample. The possibility of using NRFNA to identify fissile materials within a sample was clearly demonstrated, but the detectors used were not sufficient to achieve a good n/g PSD. New PSD scintillators were introduced. A first measurement campaign was performed in 2023. The acquired data are currently being analyzed, but preliminary results show distinct fission resonance peaks of increasing intensity with varying thicknesses of the same natural uranium samples. Currently, an assembly of multiple scintillators is being investigated to provide a better signal. The new setup will be tested starting in early 2024. In this paper, we will describe in detail the NRA project development and the latest results from experimental campaign. This work is supported by MEXT under the subsidy for the "promotion for strengthening nuclear security and the like"
弘中 浩太; Lee, J.; 小泉 光生; 伊藤 史哲*; 堀 順一*; 寺田 和司*; 佐野 忠史*
Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09
被引用回数:2 パーセンタイル:41.04(Instruments & Instrumentation)We propose neutron resonance fission neutron analysis (NRFNA), an active nondestructive assay (NDA) technique, to improve the capability to identify and quantify a small amount of fissile material in a sample. NRFNA uses pulsed neutrons to induce fission reactions in the sample. Fission neutrons are detected by a neutron-gamma pulse shape discrimination (PSD) scintillation detector with time-of-flight (TOF) technique. The obtained nuclide-specific resonance peaks in the neutron energy spectrum provide information to identify and quantify a fissile material in the sample. The possibility of using PSD for NRFNA was confirmed through a test experiment using a natural uranium sample. We successfully observed the resonance peaks from U(n,f) reaction and showed that NRFNA would be useful for measuring a small amount of fissile material in a sample.
木村 敦; 中村 詔司; 遠藤 駿典; Rovira Leveroni, G.; 岩本 修; 岩本 信之; 原田 秀郎; 片渕 竜也*; 寺田 和司*; 堀 順一*; et al.
Journal of Nuclear Science and Technology, 60(6), p.678 - 696, 2023/06
被引用回数:2 パーセンタイル:38.50(Nuclear Science & Technology)Neutron total and capture cross-section measurements of Gd and Gd were performed in the ANNRI at the MLF of the J-PARC. The neutron total cross sections were determined in the energy region from 5 to 100 meV. At the thermal neutron energy, the total cross sections were obtained to be 59.41.7 and 251.94.6 kilobarn for Gd and Gd, respectively. The neutron capture cross sections were determined in the energy region from 3.5 to 100 meV with an innovative method by taking the ratio of the detected capture event rate between thin and thick samples. At the thermal energy, the capture cross sections were obtained as 59.02.5 and 247.43.9 kilobarn for Gd and Gd, respectively. The present total and capture cross sections agree well within the standard deviations. The results for Gd were found to be consistent with the values in JENDL-4.0 and the experimental data given by Mastromarco et al. and Leinweber et al. within one standard deviation. Moreover, the present results for Gd agreed with the evaluated data in JENDL-4.0 and the experimental data by Mller et al. within one standard deviation and agreed with the data by Mastromarco et al. within 1.4 standard deviations. However, they disagree (11% larger) with the experimental result by Leinweber et al.
片渕 竜也*; 岩本 修; 堀 順一*; 木村 敦; 岩本 信之; 中村 詔司; Rovira Leveroni, G.; 遠藤 駿典; 芝原 雄司*; 寺田 和司*; et al.
EPJ Web of Conferences, 281, p.00014_1 - 00014_4, 2023/03
Long-lived minor actinides (MA) in nuclear waste from nuclear power plants are a long-standing issue to continue nuclear energy production. To solve the issue, researchers have suggested nuclear transmutation, in which long-lived radionuclides are transmuted into stable or shorter-life nuclides via neutron-induced nuclear reactions. Development of nuclear transmutation systems as an accelerator-driven system requires accurate neutron nuclear reaction data. The present research project entitled "Study on accuracy improvement of fast-neutron capture reaction data of long-lived MAs for development of nuclear transmutation systems" have been conducted as a joint collaboration, including Tokyo Tech, Japan Atomic Energy Agency and Kyoto University. This project focuses on the neutron capture reaction of MAs, especially Np, Am and Am, in the fast neutron energy region. The final goal of this project is to improve the accuracies of the neutron capture cross sections of Np, Am and Am employing a high-intensity neutron beam from a spallation source of the Japan Proton Accelerator Research Complex (J-PARC) that reduces uncertainties of measurement. To achieve the goal, a neutron beam filter system in J-PARC, sample characteristic assay, and theoretical reaction model study were developed. In this contribution, the overview and results of the project will be presented.
中野 秀仁*; 片渕 竜也*; Rovira Leveroni, G.; 児玉 有*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典
Journal of Nuclear Science and Technology, 59(12), p.1499 - 1506, 2022/12
被引用回数:2 パーセンタイル:38.50(Nuclear Science & Technology)A neutron monitoring detection system was developed for neutron capture cross section measurement using a spallation neutron source. A combination of a plastic scintillator and a thin LiF foil was adopted for the detector. The detector system was tested to study the feasibility of the system. Neutron irradiation experiments were conducted with the Accurate Neutron-Nucleus Reaction Measurement Instrument in the Materials and Life Science facility of the Japan Proton Accelerator Research Complex. A neutron time-of-flight spectrum was successfully measured without significant count loss or detector paralysis. The statistical uncertainty reached 0.7% at neutron energies around 6 meV.
Lee, J.; 伊藤 史哲*; 弘中 浩太; 高橋 時音; 鈴木 敏*; 小泉 光生; 堀 順一*; 寺田 和司*
第43回日本核物質管理学会年次大会会議論文集(インターネット), 4 Pages, 2022/11
中性子検出に広く使われているGS20リチウムガラスシンチレータは、応答は速いがn/g弁別能に乏しい。ガンマ線背景事象を適切に評価するためには、ガンマ線に対する応答特性を知る必要がある。特に中性子測定時は減速材中の水素原子核から発生する2.2MeVのガンマ線が主な背景事象となるが、このような高エネルギーガンマ線への応答特性の報告はほとんどない。このため、本研究では、GS20の応答特性についてNa-24ガンマ線源を用いて調べた。
Lee, J.; 弘中 浩太; 伊藤 史哲*; 高橋 時音; 小泉 光生; 堀 順一*; 寺田 和司*
KURNS Progress Report 2021, P. 97, 2022/07
文部科学省補助金事業「核セキュリティ強化等推進事業費補助金」の下、核不拡散技術開発の一環として、レーザー駆動中性子源(LDNS)を用いたコンパクトな核共鳴透過分析(NRTA)システムの技術開発を行っている。コンパクトなNRTAシステムを構築するためには、中性子の飛行距離を短くすることが重要な要素である。しかし、短距離のTOF測定では、減速材中の水素への中性子捕獲による2.2MeVガンマ線の影響が短距離に比例して指数的に大きくなってしまう。また、LDNSは発展途上であるため、中性子フラックスが十分ではなく、検出効率の高い検出器を用いることが望ましい。このため、我々は、高エネルギーガンマ線に対する検出効率が低く、かつ高い中性子感度を持つ検出器(積層型中性子検出器)を開発してきた。令和3年度の京都大学LINAC実験では、中性子に対する検出効率を上げ、両側にPMTを取り付け、コインシデンス測定によりノイズを除去できるようになった改良型の積層型中性子検出器の性能評価を行い、共鳴TOF測定による良いパフォーマンスを確かめられた。
Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 児玉 有*; 中野 秀仁*; 佐藤 八起*; et al.
Journal of Nuclear Science and Technology, 59(5), p.647 - 655, 2022/05
被引用回数:1 パーセンタイル:12.48(Nuclear Science & Technology)Cr-filtered keV-neutron experiments were performed in the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) beamline in the Materials and Life Science (MLF) facility of the Japan Proton Accelerator Research Complex (J-PARC) to measure the neutron capture cross-section of Au. The energy range of the neutron filtering system at ANNRI was extended through the use of 15 cm of Cr as filter material to tailor quasi-monochromatic neutron peaks with averaged neutron energies of 133.4 and 45.0 keV. The performance of the Cr filter assembly was evaluated by means of experimental capture and transmission analyses, together with the use of Monte-Carlo simulations. The present Au neutron capture cross-section results provide agreement within uncertainties with the JENDL-4.0 standard evaluated library and the IAEA standard data library further demonstrating the capabilities of the neutron filtering system at ANNRI.
中野 秀仁*; 片渕 竜也*; Rovira Leveroni, G.*; 児玉 有*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典
JAEA-Conf 2021-001, p.166 - 170, 2022/03
In neutron capture cross section measurement, monitoring the number of the incident neutrons is necessary. However, in measurement with J-PARC/ANNRI, direct neutron monitoring system has not been employed. Conventional neutron detectors cannot be used as a beam monitor at ANNRI because of two reasons, high counting rate environment and gamma-flash. In general, a semiconductor detector or an inorganic scintillator, which is adopted for a neutron detector, has relatively longer response time and is unsuitable for beam monitoring at ANNRI. Therefore, a combination of a thin plastic scintillator and a LiF foil was selected as a detection system, whose fast response enabled detecting neutrons at a high counting rate. Low gamma ray sensitivity of a thin plastic scintillator allows measuring fast TOF region without count loss or detector paralysis. The geometry of the LiF foil, the plastic scintillator, and photomultiplier tube (PMT) was designed. The optimal thickness of the LiF foil was determined with simulation codes, SRIM and PHITS. The detector system was tested under the high neutron irradiation condition at J-PARC /ANNRI. A neutron TOF spectrum was successfully measured without significant count loss or detector paralysis. A neutron energy spectrum was driven from difference of TOF spectrum with and without LiF. The neutron spectrum was compared with a past neutron spectrum and good agreement was obtained. Statistic error was 0.68 at 6.0 meV even though measurement times in this study were short.
Rovira Leveroni, G.; 岩本 修; 木村 敦; 中村 詔司; 岩本 信之; 遠藤 駿典; 片渕 竜也*; 寺田 和司*; 児玉 有*; 中野 秀仁*; et al.
JAEA-Conf 2021-001, p.156 - 161, 2022/03
A neutron filtering system has been designed in order to bypass the double-timed structure of the beam. Filter materials were introduced into the rotary collimator of the ANNRI beamline in order to produce quasi-monoenergetic neutron filtered beams. Filter assemblies consisting of Fe with a thickness of 20 cm, and Si with thicknesses of 20 cm and 30 cm of Si were used separately to produce filtered neutron peaks with energies of 24 keV (Fe) and of 54 and 144 (Si). In this study, the characteristics and performance of the neutron filtering system at ANNRI using Fe and Si determined from both measurements and simulations are presented. The incident neutron flux was tested and analyzed by means of transmission and capture experiments. Moreover, simulations using the PHITS code were performed in order to determine the energy distribution of the integrated filtered peaks and assess the reliability of experimental results. Finally, preliminary results of the capture cross section of Au at the filtered energies of 24, 54 and 144 keV are also presented using the NaI(Tl) spectrometer alongside the neutron filtering system.
児玉 有*; 片渕 竜也*; Rovira Leveroni, G.; 中野 秀仁*; 寺田 和司*; 木村 敦; 中村 詔司; 遠藤 駿典
JAEA-Conf 2021-001, p.162 - 165, 2022/03
Precise nuclear data for neutron-induced reactions are necessary for the design of nuclear transmutation systems. Nevertheless, current uncertainties of nuclear data for minor actinide (MA) does not achieve requirements for the design of transmutation facilities. The determination of an incident neutron flux for measurements of neutron capture cross section is one of the main causes that affect the final uncertainty of the cross section results. In the present work, we suggest a new method to reduce systematic uncertainties of capture cross section measurements. The method employs change of the self-shielding effect with sample rotation angle. In capture cross section measurements in ANNRI, a boron sample is placed to determine the incident neutron spectrum by counting 478 keV -ray from the reaction. In this method, the boron sample is tilted with respect to the neutron beam direction, thereby changing the effective area. This results in change of the shapes of time-of-flight (TOF) spectrum of 478 keV -ray from the reaction with the tilted angle. Comparing the difference of the TOF spectra at different angles and assuming the 1/v energy dependence of cross section of the reaction, the area density of the boron sample can be determined without using the sample mass and area. Theoretical and experimental studies on the new method are ongoing. Calculation using Monte Carlo simulation code PHITS were carried out to study the feasibility of the present method. Test experiments using a sample rotation system at ANNRI were also performed.
遠藤 駿典; 木村 敦; 中村 詔司; 岩本 修; 岩本 信之; Rovira Leveroni, G.; 寺田 和司*; 明午 伸一郎; 藤 暢輔; 瀬川 麻里子; et al.
Journal of Nuclear Science and Technology, 59(3), p.318 - 333, 2022/03
被引用回数:7 パーセンタイル:69.06(Nuclear Science & Technology)In order to improve the accuracy of the cross-section and the resonance parameters of Nb, neutron capture and total cross-sections were measured using the J-PARC MLF ANNRI. The thermal-neutron capture cross-section was deduced as 0.970.12 b. The resonance parameters of 11 resonances below 400 eV were determined from obtained capture cross-sections and transmission ratios by using the resonance analysis code, REFIT.
児玉 有*; 片渕 竜也*; Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 信之; 岩本 修; 堀 順一*; 芝原 雄司*; et al.
Journal of Nuclear Science and Technology, 58(11), p.1159 - 1164, 2021/11
被引用回数:4 パーセンタイル:47.47(Nuclear Science & Technology)The neutron capture cross section of Am was measured with a pulsed neutron beam from a spallation neutron source of the Japan Proton Accelerator Research Complex. A Fe neutron beam filter was used to make the incident neutron beam mono-energetic around 23.5 keV. The neutron capture -rays were detected with a NaI(Tl) detector. The pulse height weighting technique was employed to derive the neutron capture cross section from the pulse height spectrum. The cross section was determined relative to the capture cross section of Au of JENDL-4.0. The neutron capture cross section of Am was determined with a smaller uncertainty than previous measurements. The previous measurements and the JENDL-4.0 cross sections were found to be lower than the present result.
伊藤 史哲*; Lee, J.; 弘中 浩太; 高橋 時音; 鈴木 敏*; 堀 順一*; 寺田 和司*; 小泉 光生
KURNS Progress Report 2020, P. 98, 2021/08
文部科学省補助金事業「核セキュリティ強化等推進事業費補助金」の下、核不拡散技術開発の一環として、レーザー駆動中性子源(LDNS)を用いたコンパクトな核共鳴透過分析(NRTA)システムの技術開発を行っている。NRTAにおいては、パルス中性子源から放出される中性子エネルギーが、飛行時間(TOF)法を用いて測定される。LDNSは、短い飛行距離でも高精度なTOF測定を行うために必要となる、短いパルス幅を持つという特性等から注目されている。短距離TOF測定では、減速材中の水素への中性子捕獲による2.2MeVガンマ線の飛来タイミングと、共鳴エネルギー付近の中性子の飛来タイミングが重なり、大きなガンマ線背景事象が存在することとなる。また、LDNSは発展途上であるため、中性子フラックスが十分ではなく、検出効率の高い検出器を用いることが望ましい。このため、我々は、高エネルギーガンマ線に対する検出効率が低く、かつ高い中性子感度を持つ検出器(多層型中性子検出器)を開発してきた。令和3年度の実験結果の一つとして、多層型中性子検出器が、高エネルギーガンマ線に対して低感度であることが確かめられた。
Rovira Leveroni, G.; 木村 敦; 中村 詔司; 遠藤 駿典; 岩本 修; 岩本 信之; 片渕 竜也*; 寺田 和司*; 児玉 有*; 中野 秀仁*; et al.
Nuclear Instruments and Methods in Physics Research A, 1003, p.165318_1 - 165318_10, 2021/07
被引用回数:5 パーセンタイル:57.81(Instruments & Instrumentation)A neutron filtering system has been introduced in the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) beamline in the Material and Life Science (MLF) building of the Japan Proton Accelerator Research Complex (J-PARC) in order to produce quasi-monoenergetic neutron beams. The filtered neutron spectrum by the filter assemblies was analyzed by means of capture and transmission measurements and also by Monte Carlo simulations using PHITS. The characteristics of the filtered neutron beam are discussed alongside its viability in future applications for neutron cross-section measurements in the fast neutron region.
片渕 竜也*; 藤 暢輔; 水本 元治*; 齋藤 辰宏*; 寺田 和司*; 木村 敦; 中村 詔司; Huang, M.*; Rovira Leveroni, G.; 井頭 政之*
European Physical Journal A, 57(1), p.4_1 - 4_4, 2021/01
被引用回数:4 パーセンタイル:49.55(Physics, Nuclear)A new neutron resonance of Y was found in time-of-flight (TOF) neutron capture experiments using a pulsed neutron beam from a spallation neutron source of the Japan Proton Accelerator Research Complex. The observed resonance energy was 19.7 eV that is much lower than the lowest energy (2.60 keV) of the previous reported resonances. In addition to the TOF measurement, nuclide identification of the resonance was made by prompt -ray analysis. Neutron capture -rays from Y were clearly observed only on the resonance. Resonance analysis was applied to the experimental results and the resonance parameters of the new resonance are given.
片渕 竜也*; 堀 順一*; 岩本 信之; 岩本 修; 木村 敦; 中村 詔司; 芝原 雄司*; 寺田 和司*; 登坂 健一*; 遠藤 駿典; et al.
JAEA-Conf 2020-001, p.5 - 9, 2020/12
A research project entitled "Study on accuracy improvement of fast-neutron capture reaction data of long-lived MAs for development of nuclear transmutation systems" has been ongoing since 2017. The project aims at improving accuracy of neutron capture cross sections of long-lived minor actinides (MAs; Np and Am) in the fast neutron energy region which are very important for development of nuclear transmutation systems. In order to improve the capture reaction data of MAs, measurements using an intense pulsed neutron beam from a spallation neutron source of J-PARC are planned. The project consists of four parts: (1) development of neutron beam filter system, (2) cross section measurement, (3) sample characteristic assay, and (4) theoretical study. The filter system is designed to solve a double bunch issue in J-PARC. The sample characteristic assay lowers systematic uncertainties originating the samples. In the theoretical study, a nuclear reaction model is applied to analyzing cross sections and -ray spectra measured in experiments. The outline of the project and the current progress will be presented.
片渕 竜也*; 岩本 修; 堀 順一*; 木村 敦; 岩本 信之; 中村 詔司; 芝原 雄司*; 寺田 和司*; Rovira, G.*; 松浦 翔太*
EPJ Web of Conferences, 239, p.01044_1 - 01044_4, 2020/09
被引用回数:2 パーセンタイル:83.55(Nuclear Science & Technology)In 2017, a research project entitled "Study on accuracy improvement of fast-neutron capture reaction data of long-lived MAs for development of nuclear transmutation systems" started as a joint collaboration, including Tokyo Tech, Japan Atomic Energy Agency and Kyoto University. This project focuses on neutron capture reaction of MAs, especially Np, Am and Am, in the fast neutron energy region. The final goal of this project is to improve the neutron capture cross sections of Np, Am and Am employing a high-intensity neutron beam from a spallation source of the Japan Proton Accelerator Research Complex (J-PARC) that reduces uncertainties of measurement. In this contribution, the overview of the project and the current progress will be presented.
Rovira, G.*; 片渕 竜也*; 登坂 健一*; 松浦 翔太*; 寺田 和司*; 岩本 修; 木村 敦; 中村 詔司; 岩本 信之; 瀬川 麻里子; et al.
Journal of Nuclear Science and Technology, 57(1), p.24 - 39, 2020/01
被引用回数:12 パーセンタイル:79.58(Nuclear Science & Technology)The neutron capture cross-section of Np has been measured in the neutron energy region of 10 meV to 500 eV. A neutron time-of-flight method was employed using the NaI(Tl) spectrometer in the ANNRI beam-line at the Japanese Proton Accelerator Re-search Complex (J-PARC). The experimental capture yield was derived using the pulse-height weighting technique and an energy dependent cross-section was obtained relative to the incident neutron spectrum derived from a B(n, )Li reaction yield. The absolute cross-section was determined by normalizing the results to JENDL-4.0 cross-section data at the first resonance of Np. The thermal cross-section was measured to be 177.6 3.8 b. The resolved resonance region was analyzed with the REFIT code.