Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Report of investigation on malfunction of reserved shutdown system in HTTR

Hamamoto, Shimpei; Iigaki, Kazuhiko; Shimizu, Atsushi; Sawahata, Hiroaki; Kondo, Makoto; Oyama, Sunao; Kawano, Shuichi; Kobayashi, Shoichi; Kawamoto, Taiki; Suzuki, Hisashi; et al.

JAEA-Technology 2006-030, 58 Pages, 2006/03

JAEA-Technology-2006-030.pdf:10.69MB

During normal operation of High Temperature engineering Test Reactor (HTTR) in Japan Atomic Energy Agency (JAEA), the reactivity is controlled by the Control Rods (CRs) system which consists of 32 CRs (16 pairs) and 16 Control Rod Drive Mechanisms (CRDMs). The CR system is located in stand-pipes accompanied by the Reserved Shutdown System (RSS). In the unlikely event that the CRs fail to be inserted, the RSS is provided to insert B$$_{4}$$C/C pellets into the core. The RSS shall be designed so that the reactor should be held subcriticality from any operation condition by dropping in the pellets. The RSS consists of B$$_{4}$$C/C pellets, hoppers which contain the pellets, electric plug, driving mechanisms, guide tubes and so on. In accidents when the CRs cannot be inserted, an electric plug is pulled out by a motor and the absorber pellets fall into the core by gravity. A trouble, malfunction of one RSS out of sixteen, occurred during a series of the pre-start up checks of HTTR on February 21, 2005. We investigated the cause of the RSS trouble and took countermeasures to prevent the issue. As the result of investigation, the cause of the trouble was attributed to the following reason: In the motor inside, The Oil of grease of the multiplying gear flowed down from a gap of the oil seal which has been deformed and was mixed with abrasion powder of brake disk. Therefore the adhesive mixture prevented a motor from rotating.

JAEA Reports

Test results of the reactor inlet coolant temperature control system of HTTR

Saito, Kenji; Nakagawa, Shigeaki; Hirato, Yoji; Kondo, Makoto; Sawahata, Hiroaki; Tsuchiyama, Masaru*; Ando, Toshio*; Motegi, Toshihiro; Mizushima, Toshihiko; Nakazawa, Toshio

JAERI-Tech 2004-042, 26 Pages, 2004/04

JAERI-Tech-2004-042.pdf:1.16MB

The reactor control system of HTTR is composed of the reactor power control system, the reactor inlet coolant temperature control system, the primary coolant flow rate control system and so on. The reactor control system of HTTR achieves reactor power 30MW, reactor outlet coolant temperature 850$$^{circ}$$C, reactor inlet coolant temperature 395$$^{circ}$$C under the condition that primary coolant flow rate is fixed. In the Rise-to-Power Test, the performance test of the reactor inlet coolant temperature control system was carried out in order to confirm the control capability of this control system. This report shows the test results of performance test. As a result, the control parameters, which can control the reactor inlet coolant temperature stably during the reactor operation, were successfully selected. And it was confirmed that the reactor inlet coolant temperature control system has the capability of controlling the reactor inlet coolant temperature stably against any disturbances on the basis of operational condition of HTTR.

JAEA Reports

Investigation of automatic shutdown of HTTR on May 21st, 2003

Hirato, Yoji; Saito, Kenji; Kondo, Makoto; Sawahata, Hiroaki; Motegi, Toshihiro; Tsuchiyama, Masaru*; Ando, Toshio*; Mizushima, Toshihiko; Nakazawa, Toshio

JAERI-Tech 2004-037, 33 Pages, 2004/04

JAERI-Tech-2004-037.pdf:4.08MB

HTTR (High Temperature Engineering Test Reactor) was operated from May 6th, 2003 to June 18th, 2003 to obtain operation data in parallel loaded operation mode and in safety demonstration tests. Operated with the reactor power at 60% of the rated power on May 21st, HTTR was automatically scrammed by a signalof "Primary coolant flow rate of the Primary Pressurized Water Cooler (PPWC): Low". The cause of the shutdown was the primary gas circulator (A) automatically stopped. The primary coolant flow rate of the PPWC decresed and reached the scram set value due to the gas circulator stop. As a result of investigation, it became clear that the cause of the gas circulator stop was malfunction of an auxiliary relay which monitored electric power of a circuit breaker in power line of the gas circulator. The cause of malfunction was deterioration of the relay under high temperature condition because the relay was installed beside an electric part which was heated up by electricity.

3 (Records 1-3 displayed on this page)
  • 1