Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 25

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Event report of JHPS Symposium 2022

Yasuoka, Yumi*; Fujita, Hiroki; Tsuji, Tomoya; Tsujiguchi, Takakiyo*; Sasaki, Michiya*; Miyazaki, Tomoyuki*; Hashima, Shun*; Yasuda, Hiroshi*; Shimada, Kazumasa; Hirota, Seiko*

Hoken Butsuri (Internet), 57(3), p.146 - 155, 2022/12

no abstracts in English

Journal Articles

Frontline of R&D for decommissioning and waste disposal, 1; R&D for processing and disposal of low-level radioactive waste and closure of uranium mine

Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 62(11), p.658 - 663, 2020/11

no abstracts in English

Journal Articles

Decommissioning of research facilities

Tsuji, Tomoyuki

Genshiryoku Nenkan 2020, p.169 - 171, 2019/10

no abstracts in English

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in radioactive waste generated from post-irradiation examination facilities, 2

Tsuji, Tomoyuki; Hoshino, Yuzuru; Sakai, Akihiro; Sakamoto, Yoshiaki; Suzuki, Yasuo*; Machida, Hiroshi*

JAEA-Technology 2017-010, 75 Pages, 2017/06

JAEA-Technology-2017-010.pdf:2.31MB

It is necessary for reasonable disposal to be studied on evaluation methods to determine radioactivity concentrations in the radioactive wastes, which is generated from post-irradiation examination (PIE) facilities, for establishment of reasonable confirmation methods concerning radioactive wastes generated from research, industrial, and medical facilities. It has been chosen the PIE facilities of NUCLEAR DEVELOPMENT CORPORATION as a model for this study. As a result, it has been confirmed that the theoretical methods are applied for the important nuclides (H-3, C-14, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, Eu-154, U-234, U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Am-241 and Cm-244).

Journal Articles

Development of the reasonable confirmation methods concerning radioactive wastes from research facilities

Hayashi, Hirokazu; Okada, Shota; Izumo, Sari; Hoshino, Yuzuru; Tsuji, Tomoyuki; Nakata, Hisakazu; Sakai, Akihiro; Amazawa, Hiroya; Sakamoto, Yoshiaki

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04

A near surface disposal for low-level radioactive waste (LLW) generated from commercial nuclear power plants (NPP) is operating in Japan. However, the disposal of LLW from other nuclear facilities and radioisotope utilization facilities has not yet been implemented. Japan Atomic Energy Agency (JAEA) plans to implement the near surface disposal. In order to be disposed of these wastes, it must be confirmed by the regulator that each waste package (radioactive waste solidified with filling materials, such as cement, in a container by a regulated method is termed a waste package) conforms to technical standards that aim for safe disposal. JAEA has studied reasonable confirmation methods to demonstrate the conformity of the waste package to the technical standard as NPP operators have studied it. This report describes the outline of our activities focused on development of the confirmation method applicable to radioactive wastes from research facilities.

JAEA Reports

Waste acceptance criteria for waste packages destined for near surface disposal containing radioactive waste from research, industrial and medical facilities

Okada, Shota; Izumo, Sari; Nakata, Hisakazu; Tsuji, Tomoyuki; Sakai, Akihiro; Amazawa, Hiroya

JAEA-Technology 2016-023, 129 Pages, 2016/11

JAEA-Technology-2016-023.pdf:8.95MB

Waste packages must meet the technical requirements. This is because JAEA has been preparing an operating procedure manual for quality control of radioactive waste disposal to be applied to the processing of the waste packages. Raw wastes generated by JAEA are segregated and stored by a method specified in the manual. The composition of raw wastes was characterized on the basis of records of the segregation process. Simulated waste packages were produced by placing the waste materials in a 200 liter drum, which was then filled with mortar, followed by curing in a controlled manner. The static load test was conducted to measure deformation and strain performance of the simulated waste package. Compression apparatuses which can imitate loading conditions in pit-type and trench-type facility that are planned by JAEA were used. Based on the test result, waste packages produced in accordance with the manual met the technical requirement under the condition.

JAEA Reports

Waste acceptance criteria for waste packages destined for near surface disposal containing radioactive waste from research, industrial and medical facilities

Nakata, Hisakazu; Sakai, Akihiro; Okada, Shota; Izumo, Sari; Tsuji, Tomoyuki; Kurosawa, Ryohei; Amazawa, Hiroya

JAEA-Technology 2016-001, 112 Pages, 2016/03

JAEA-Technology-2016-001.pdf:16.71MB

The waste packages must meet the technical requirements that radioactive waste shall be solidified in a container by a method determined by the Nuclear Regulation Authority to prevent from radiation hazards. JAEA has been preparing operating procedure manual on quality control for radioactive waste disposal in order to promote the manufacturing the waste package. This report presents that simulant waste packages were produced by placing wastes in a 200 liter drum, which was then filled with mortar of a novel mix proportion, followed by curing in a controlled manner. Determination of the presence of harmful voidage and raw waste immobility were performed by direct measurement and visual inspection of a vertical cross section of the waste packages respectively.

JAEA Reports

Sensitivity of radioactive nuclide leaching rate under the sub-surface disposal

Tsuji, Tomoyuki; Nakamura, Yasuo; Nakatani, Takayoshi

JAEA-Technology 2015-014, 34 Pages, 2015/06

[The article has been found to have a problem about reliability of the corrosion data acquisition, and thus it is unavailable to download the full text in accordance with authors' intentions to retract the report.] In order to dispose of radioactive wastes for sub-surface disposal, JAEA has studied the safety assessment for likely scenario and less-likely scenario. Radioactive nuclide leaching rate under the sub-surface disposal is important parameter in the safety assessment because radioactive nuclides in activated metal wastes are released with its corrosion. In this report, sensitivity of radioactive nuclide leaching rate is studied for the safety assessment. As the result, it is confirmed that Cl-36 which is dominant for the safety assessment in groundwater scenario is sensitive to radioactive nuclide leaching rate, but Nb-94 which is dominant in tunnel excavation scenario is not sensitive to radioactive nuclide leaching rate but to distribution coefficients in engineered barrier.

JAEA Reports

Study on the evaluation methods to determine the radioactivity concentration in low-level radioactive wastes generated from JPDR facilities, 2

Tsuji, Tomoyuki; Sakai, Akihiro; Izumo, Sari; Amazawa, Hiroya

JAEA-Technology 2015-009, 46 Pages, 2015/06

JAEA-Technology-2015-009.pdf:1.45MB

It is necessary to establish practical evaluation methods to determine radioactivity concentrations of the important nuclides for safety assessment on disposal of radioactive wastes in order to dispose of low-level radioactive wastes generated from various nuclear facilities in JAEA. In this report, it has been studied that the practical evaluation methods are applied for the important nuclides (H-3, C-14, Cl-36, Ni-59, Co-60, Ni-63, Sr-90, Mo-93, Nb-94, Tc-99, Ag-108m, Cs-137, Eu-152, Eu-154, Ho-166m, $$alpha$$ nuclides) of radioactive wastes generated from JPDR facilities. As a result, it has been found that the appropriate methods to determine radioactivity concentrations such as the scaling factor method (Ni-63, Nb-94), the mean activity concentration method (H-3, C-14, Cl-36 and so on) and the theoretical method (Ni-59) can be applied and Co-60, Ag-108m and Cs-137 will be evaluated by $$gamma$$ measurements from outside of the waste package.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR facilities, 4

Omori, Hiroyuki; Nebashi, Koji; Shimada, Asako; Tanaka, Kiwamu; Yasuda, Mari; Hoshi, Akiko; Tsuji, Tomoyuki; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2014-029, 31 Pages, 2015/03

JAEA-Data-Code-2014-029.pdf:1.51MB

Simple and rapid methods to evaluate the radioactivity concentrations are required for the radioactive waste generated from research facilities in the Japan Atomic Energy Agency to dispose of in a near-surface repository. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid waste generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid waste generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In this report, we reported the analytical data determined in fiscal 2014 ($$^{137}$$Cs and $$^{93}$$Mo) and summarized them with the radioactivity concentrations obtained in the past as basic data to consider the evaluation method of radioactivity concentrations in the stored waste taken from JPDR.

JAEA Reports

Development of the assessment tool for has migration scenario concerning sub-surface disposal

Sakatani, Keiichi; Nakamura, Yasuo; Tsuji, Tomoyuki; Nakatani, Takayoshi

JAEA-Data/Code 2014-020, 38 Pages, 2014/11

JAEA-Data-Code-2014-020.pdf:30.04MB

The safety assessment for sub-surface disposal of radioactive wastes should ensure that calculated dose will be lower than the dose assigned to the scenario in question over the whole evaluation period of hundreds of thousands years. We have developed several assessment tools for the safe disposal of radioactive wastes on the GoldSim platform, and calculated doses since JFY 2008. These assessment tools have been improved reflecting the last view of assessment. In addition, we have developed an assessment tool for the gas migration scenario. This report describes concept of assessment model and structure of tool for the gas migration scenario.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR facilities, 3

Yasuda, Mari; Tanaka, Kiwamu; Watanabe, Koichi; Hoshi, Akiko; Tsuji, Tomoyuki; Kameo, Yutaka

JAEA-Data/Code 2014-011, 59 Pages, 2014/08

JAEA-Data-Code-2014-011.pdf:16.84MB

Simple and rapid methods to evaluate the radioactivity concentrations are required to be established for the near surface disposal of radioactive wastes generated from research facilities at Japan Atomic Energy Agency. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid wastes generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid wastes generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In the present paper, we summarized data about the radioactivity concentrations which accumulated by the analysis.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR facilities, 2

Tanaka, Kiwamu; Yasuda, Mari; Watanabe, Koichi; Hoshi, Akiko; Tsuji, Tomoyuki; Higuchi, Hidekazu

JAEA-Data/Code 2013-008, 16 Pages, 2013/11

JAEA-Data-Code-2013-008.pdf:2.41MB

Simple and rapid methods to evaluate the radioactivity concentrations are required to be established for the near surface disposal of radioactive wastes generated from research facilities at Japan Atomic Energy Agency. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid wastes generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid wastes generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In the present paper, we summarized data about the radioactivity concentrations which accumulated by the analysis.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in low-level radioactive wastes generated at JPDR facilities, 1

Tsuji, Tomoyuki; Kameo, Yutaka; Sakai, Akihiro; Hoshi, Akiko; Takahashi, Kuniaki

JAEA-Technology 2012-045, 37 Pages, 2013/02

JAEA-Technology-2012-045.pdf:2.43MB

It is necessary to establish practical evaluation methods to determine radioactivity concentrations of the important nuclides for safety assessment on disposal of radioactive wastes in order to dispose of low-level radioactive wastes generated from various nuclear facilities in JAEA. In this report, the practical evaluation methods such as the scaling factor method for JPDR facilities have been studied for disposal of the low-level radioactive wastes generated from nuclear reactor facilities in JAEA.

JAEA Reports

Study on the evaluation method to determine the radioactivity concentration in the bituminized products generated from research facilities

Tsuji, Tomoyuki; Kameo, Yutaka; Sakai, Akihiro; Amazawa, Hiroya; Takahashi, Kuniaki

JAEA-Technology 2011-028, 66 Pages, 2011/11

JAEA-Technology-2011-028.pdf:3.16MB

In order to dispose of low-level radioactive wastes generated from various nuclear facilities in JAEA, we need to establish practical evaluation methods to determine radioactivity concentrations of the important nuclides for safety assessment on disposal of radioactive wastes. In this report, we have studied on establishing the practical evaluation methods such as the scaling factor method for bituminized products generated at Nuclear Science Research Institute and also summarized subjects for establishment of the practical evaluation methods for the bituminized products.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JPDR facilities

Hoshi, Akiko; Tsuji, Tomoyuki; Tanaka, Kiwamu; Yasuda, Mari; Watanabe, Koichi; Sakai, Akihiro; Kameo, Yutaka; Kogure, Hiroto; Higuchi, Hidekazu; Takahashi, Kuniaki

JAEA-Data/Code 2011-011, 31 Pages, 2011/10

JAEA-Data-Code-2011-011.pdf:1.7MB

Simple and rapid methods to evaluate the radioactivity concentrations are required to be established for the near surface disposal of radioactive wastes generated from research facilities at Japan Atomic Energy Agency. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid wastes generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid wastes generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In the present paper, we summarized data (262 data) about the radioactivity concentrations of the 7 important nuclides ($$^{3}$$H, $$^{14}$$C, $$^{60}$$Co, $$^{59}$$Ni, $$^{63}$$Ni, $$^{90}$$Sr, $$^{137}$$Cs) which accumulated by the analysis.

JAEA Reports

Analysis of the radioactivity concentrations in asphalt- or cement-solidified products generated from research facilities

Hoshi, Akiko; Kameo, Yutaka; Katayama, Atsushi; Sakai, Akihiro; Tsuji, Tomoyuki; Nakashima, Mikio; Kihara, Shinji; Takahashi, Kuniaki

JAEA-Data/Code 2009-023, 84 Pages, 2010/03

JAEA-Data-Code-2009-023.pdf:12.81MB

In order to establish the practical evaluation methods such as scaling factor method to determine the radioactivity concentrations of the important nuclides for safety assessment of disposal of radioactive wastes, we analyzed low-level radioactive liquid waste (56 samples), which is generated from various research facilities at Nuclear Science Research Institute from FY1998 to FY2007 and accumulated the radioactivity concentrations data (563 data) of the 17 important nuclides. We investigated the correlation of the radioactivity concentrations of the important nuclides with the "Key nuclides ($$^{60}$$Co or $$^{137}$$Cs)". In present paper, the radioactivity concentrations data of the 17 important nuclides and the results of the correlation of the radioactivity concentrations are summarized for the data to establish the practical evaluation methods to determine the radioactivity concentrations in asphalt-solidified or cement-solidified products.

JAEA Reports

The Outline of investigation on integrity of JMTR concrete structures, cooling system and utility facilities

Ebisawa, Hiroyuki; Hanakawa, Hiroki; Asano, Norikazu; Kusunoki, Hidehiko; Yanai, Tomohiro; Sato, Shinichi; Miyauchi, Masaru; Oto, Tsutomu; Kimura, Tadashi; Kawamata, Takanori; et al.

JAEA-Technology 2009-030, 165 Pages, 2009/07

JAEA-Technology-2009-030.pdf:69.18MB

The condition of facilities and machinery used continuously were investigated before the renewal work of JMTR on FY 2007. The subjects of investigation were reactor building, primary cooling system tanks, secondary cooling system piping and tower, emergency generator and so on. As the result, it was confirmed that some facilities and machinery were necessary to repair and others were used continuously for long term by maintaining on the long-term maintenance plan. JMTR is planed to renew by the result of this investigation.

JAEA Reports

Verification on reliability of diaphragm seal

Ide, Hiroshi; Sakuta, Yoshiyuki; Hanawa, Yoshio; Tsuji, Tomoyuki; Tsuboi, Kazuaki; Nagao, Yoshiharu; Miyazawa, Masataka

JAEA-Technology 2009-019, 28 Pages, 2009/06

JAEA-Technology-2009-019.pdf:41.1MB

The main body of the JMTR is composed of reactor pressure vessel, core and reactor pool. At the bottom of the reactor pool, the Diaphragm-seal (2.6m outer diameter, 2m inner diameter, thickness 1.5mm) of the JMTR made of stainless steel is installed to prevent the water leak of the reactor pool and to absorb the expansion of the reactor pressure vessel due to pressure and temperature changes. Prior to the refurbishment of the JMTR, the inspection device which is a deposition-collection apparatus with underwater-camera was developed, and the visual inspection was carried out to confirm the soundness of the diaphragm-seal. As a result, harmful flaws and/or corrosions were not inspected in the visual inspection, and the soundness of the diaphragm seal was confirmed. In future, the long-term integrity of the diaphragm-seal will could be achieved by conducting the periodic inspection.

JAEA Reports

The Present situation and future utilization of testing reactors in the world

Ito, Haruhiko; Ide, Hiroshi; Yamaura, Takayuki; Tsuji, Tomoyuki

JAERI-Review 2004-001, 39 Pages, 2004/02

JAERI-Review-2004-001.pdf:2.02MB

no abstracts in English

25 (Records 1-20 displayed on this page)