Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yasuoka, Yumi*; Fujita, Hiroki; Tsuji, Tomoya; Tsujiguchi, Takakiyo*; Sasaki, Michiya*; Miyazaki, Tomoyuki*; Hashima, Shun*; Yasuda, Hiroshi*; Shimada, Kazumasa; Hirota, Seiko*
Hoken Butsuri (Internet), 57(3), p.146 - 155, 2022/12
no abstracts in English
Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya
Nihon Genshiryoku Gakkai-Shi ATOMO, 62(11), p.658 - 663, 2020/11
no abstracts in English
Tsuji, Tomoyuki
Genshiryoku Nenkan 2020, p.169 - 171, 2019/10
no abstracts in English
Tsuji, Tomoyuki; Hoshino, Yuzuru; Sakai, Akihiro; Sakamoto, Yoshiaki; Suzuki, Yasuo*; Machida, Hiroshi*
JAEA-Technology 2017-010, 75 Pages, 2017/06
It is necessary for reasonable disposal to be studied on evaluation methods to determine radioactivity concentrations in the radioactive wastes, which is generated from post-irradiation examination (PIE) facilities, for establishment of reasonable confirmation methods concerning radioactive wastes generated from research, industrial, and medical facilities. It has been chosen the PIE facilities of NUCLEAR DEVELOPMENT CORPORATION as a model for this study. As a result, it has been confirmed that the theoretical methods are applied for the important nuclides (H-3, C-14, Co-60, Ni-63, Sr-90, Tc-99, Cs-137, Eu-154, U-234, U-235, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Am-241 and Cm-244).
Hayashi, Hirokazu; Okada, Shota; Izumo, Sari; Hoshino, Yuzuru; Tsuji, Tomoyuki; Nakata, Hisakazu; Sakai, Akihiro; Amazawa, Hiroya; Sakamoto, Yoshiaki
Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 7 Pages, 2017/04
A near surface disposal for low-level radioactive waste (LLW) generated from commercial nuclear power plants (NPP) is operating in Japan. However, the disposal of LLW from other nuclear facilities and radioisotope utilization facilities has not yet been implemented. Japan Atomic Energy Agency (JAEA) plans to implement the near surface disposal. In order to be disposed of these wastes, it must be confirmed by the regulator that each waste package (radioactive waste solidified with filling materials, such as cement, in a container by a regulated method is termed a waste package) conforms to technical standards that aim for safe disposal. JAEA has studied reasonable confirmation methods to demonstrate the conformity of the waste package to the technical standard as NPP operators have studied it. This report describes the outline of our activities focused on development of the confirmation method applicable to radioactive wastes from research facilities.
Okada, Shota; Izumo, Sari; Nakata, Hisakazu; Tsuji, Tomoyuki; Sakai, Akihiro; Amazawa, Hiroya
JAEA-Technology 2016-023, 129 Pages, 2016/11
Waste packages must meet the technical requirements. This is because JAEA has been preparing an operating procedure manual for quality control of radioactive waste disposal to be applied to the processing of the waste packages. Raw wastes generated by JAEA are segregated and stored by a method specified in the manual. The composition of raw wastes was characterized on the basis of records of the segregation process. Simulated waste packages were produced by placing the waste materials in a 200 liter drum, which was then filled with mortar, followed by curing in a controlled manner. The static load test was conducted to measure deformation and strain performance of the simulated waste package. Compression apparatuses which can imitate loading conditions in pit-type and trench-type facility that are planned by JAEA were used. Based on the test result, waste packages produced in accordance with the manual met the technical requirement under the condition.
Nakata, Hisakazu; Sakai, Akihiro; Okada, Shota; Izumo, Sari; Tsuji, Tomoyuki; Kurosawa, Ryohei; Amazawa, Hiroya
JAEA-Technology 2016-001, 112 Pages, 2016/03
The waste packages must meet the technical requirements that radioactive waste shall be solidified in a container by a method determined by the Nuclear Regulation Authority to prevent from radiation hazards. JAEA has been preparing operating procedure manual on quality control for radioactive waste disposal in order to promote the manufacturing the waste package. This report presents that simulant waste packages were produced by placing wastes in a 200 liter drum, which was then filled with mortar of a novel mix proportion, followed by curing in a controlled manner. Determination of the presence of harmful voidage and raw waste immobility were performed by direct measurement and visual inspection of a vertical cross section of the waste packages respectively.
Tsuji, Tomoyuki; Nakamura, Yasuo; Nakatani, Takayoshi
JAEA-Technology 2015-014, 34 Pages, 2015/06
[The article has been found to have a problem about reliability of the corrosion data acquisition, and thus it is unavailable to download the full text in accordance with authors' intentions to retract the report.] In order to dispose of radioactive wastes for sub-surface disposal, JAEA has studied the safety assessment for likely scenario and less-likely scenario. Radioactive nuclide leaching rate under the sub-surface disposal is important parameter in the safety assessment because radioactive nuclides in activated metal wastes are released with its corrosion. In this report, sensitivity of radioactive nuclide leaching rate is studied for the safety assessment. As the result, it is confirmed that Cl-36 which is dominant for the safety assessment in groundwater scenario is sensitive to radioactive nuclide leaching rate, but Nb-94 which is dominant in tunnel excavation scenario is not sensitive to radioactive nuclide leaching rate but to distribution coefficients in engineered barrier.
Tsuji, Tomoyuki; Sakai, Akihiro; Izumo, Sari; Amazawa, Hiroya
JAEA-Technology 2015-009, 46 Pages, 2015/06
It is necessary to establish practical evaluation methods to determine radioactivity concentrations of the important nuclides for safety assessment on disposal of radioactive wastes in order to dispose of low-level radioactive wastes generated from various nuclear facilities in JAEA. In this report, it has been studied that the practical evaluation methods are applied for the important nuclides (H-3, C-14, Cl-36, Ni-59, Co-60, Ni-63, Sr-90, Mo-93, Nb-94, Tc-99, Ag-108m, Cs-137, Eu-152, Eu-154, Ho-166m, nuclides) of radioactive wastes generated from JPDR facilities. As a result, it has been found that the appropriate methods to determine radioactivity concentrations such as the scaling factor method (Ni-63, Nb-94), the mean activity concentration method (H-3, C-14, Cl-36 and so on) and the theoretical method (Ni-59) can be applied and Co-60, Ag-108m and Cs-137 will be evaluated by
measurements from outside of the waste package.
Omori, Hiroyuki; Nebashi, Koji; Shimada, Asako; Tanaka, Kiwamu; Yasuda, Mari; Hoshi, Akiko; Tsuji, Tomoyuki; Ishimori, Kenichiro; Kameo, Yutaka
JAEA-Data/Code 2014-029, 31 Pages, 2015/03
Simple and rapid methods to evaluate the radioactivity concentrations are required for the radioactive waste generated from research facilities in the Japan Atomic Energy Agency to dispose of in a near-surface repository. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid waste generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid waste generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In this report, we reported the analytical data determined in fiscal 2014 (Cs and
Mo) and summarized them with the radioactivity concentrations obtained in the past as basic data to consider the evaluation method of radioactivity concentrations in the stored waste taken from JPDR.
Sakatani, Keiichi; Nakamura, Yasuo; Tsuji, Tomoyuki; Nakatani, Takayoshi
JAEA-Data/Code 2014-020, 38 Pages, 2014/11
The safety assessment for sub-surface disposal of radioactive wastes should ensure that calculated dose will be lower than the dose assigned to the scenario in question over the whole evaluation period of hundreds of thousands years. We have developed several assessment tools for the safe disposal of radioactive wastes on the GoldSim platform, and calculated doses since JFY 2008. These assessment tools have been improved reflecting the last view of assessment. In addition, we have developed an assessment tool for the gas migration scenario. This report describes concept of assessment model and structure of tool for the gas migration scenario.
Yasuda, Mari; Tanaka, Kiwamu; Watanabe, Koichi; Hoshi, Akiko; Tsuji, Tomoyuki; Kameo, Yutaka
JAEA-Data/Code 2014-011, 59 Pages, 2014/08
Simple and rapid methods to evaluate the radioactivity concentrations are required to be established for the near surface disposal of radioactive wastes generated from research facilities at Japan Atomic Energy Agency. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid wastes generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid wastes generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In the present paper, we summarized data about the radioactivity concentrations which accumulated by the analysis.
Tanaka, Kiwamu; Yasuda, Mari; Watanabe, Koichi; Hoshi, Akiko; Tsuji, Tomoyuki; Higuchi, Hidekazu
JAEA-Data/Code 2013-008, 16 Pages, 2013/11
Simple and rapid methods to evaluate the radioactivity concentrations are required to be established for the near surface disposal of radioactive wastes generated from research facilities at Japan Atomic Energy Agency. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid wastes generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid wastes generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In the present paper, we summarized data about the radioactivity concentrations which accumulated by the analysis.
Tsuji, Tomoyuki; Kameo, Yutaka; Sakai, Akihiro; Hoshi, Akiko; Takahashi, Kuniaki
JAEA-Technology 2012-045, 37 Pages, 2013/02
It is necessary to establish practical evaluation methods to determine radioactivity concentrations of the important nuclides for safety assessment on disposal of radioactive wastes in order to dispose of low-level radioactive wastes generated from various nuclear facilities in JAEA. In this report, the practical evaluation methods such as the scaling factor method for JPDR facilities have been studied for disposal of the low-level radioactive wastes generated from nuclear reactor facilities in JAEA.
Tsuji, Tomoyuki; Kameo, Yutaka; Sakai, Akihiro; Amazawa, Hiroya; Takahashi, Kuniaki
JAEA-Technology 2011-028, 66 Pages, 2011/11
In order to dispose of low-level radioactive wastes generated from various nuclear facilities in JAEA, we need to establish practical evaluation methods to determine radioactivity concentrations of the important nuclides for safety assessment on disposal of radioactive wastes. In this report, we have studied on establishing the practical evaluation methods such as the scaling factor method for bituminized products generated at Nuclear Science Research Institute and also summarized subjects for establishment of the practical evaluation methods for the bituminized products.
Hoshi, Akiko; Tsuji, Tomoyuki; Tanaka, Kiwamu; Yasuda, Mari; Watanabe, Koichi; Sakai, Akihiro; Kameo, Yutaka; Kogure, Hiroto; Higuchi, Hidekazu; Takahashi, Kuniaki
JAEA-Data/Code 2011-011, 31 Pages, 2011/10
Simple and rapid methods to evaluate the radioactivity concentrations are required to be established for the near surface disposal of radioactive wastes generated from research facilities at Japan Atomic Energy Agency. In order to establish the methods to evaluate the radioactivity concentrations of miscellaneous solid wastes generated from research and testing reactors, we collected and analyzed samples from miscellaneous solid wastes generated by the decommissioning of JPDR (Japan Power Demonstration Reactor). In the present paper, we summarized data (262 data) about the radioactivity concentrations of the 7 important nuclides (H,
C,
Co,
Ni,
Ni,
Sr,
Cs) which accumulated by the analysis.
Hoshi, Akiko; Kameo, Yutaka; Katayama, Atsushi; Sakai, Akihiro; Tsuji, Tomoyuki; Nakashima, Mikio; Kihara, Shinji; Takahashi, Kuniaki
JAEA-Data/Code 2009-023, 84 Pages, 2010/03
In order to establish the practical evaluation methods such as scaling factor method to determine the radioactivity concentrations of the important nuclides for safety assessment of disposal of radioactive wastes, we analyzed low-level radioactive liquid waste (56 samples), which is generated from various research facilities at Nuclear Science Research Institute from FY1998 to FY2007 and accumulated the radioactivity concentrations data (563 data) of the 17 important nuclides. We investigated the correlation of the radioactivity concentrations of the important nuclides with the "Key nuclides (Co or
Cs)". In present paper, the radioactivity concentrations data of the 17 important nuclides and the results of the correlation of the radioactivity concentrations are summarized for the data to establish the practical evaluation methods to determine the radioactivity concentrations in asphalt-solidified or cement-solidified products.
Ebisawa, Hiroyuki; Hanakawa, Hiroki; Asano, Norikazu; Kusunoki, Hidehiko; Yanai, Tomohiro; Sato, Shinichi; Miyauchi, Masaru; Oto, Tsutomu; Kimura, Tadashi; Kawamata, Takanori; et al.
JAEA-Technology 2009-030, 165 Pages, 2009/07
The condition of facilities and machinery used continuously were investigated before the renewal work of JMTR on FY 2007. The subjects of investigation were reactor building, primary cooling system tanks, secondary cooling system piping and tower, emergency generator and so on. As the result, it was confirmed that some facilities and machinery were necessary to repair and others were used continuously for long term by maintaining on the long-term maintenance plan. JMTR is planed to renew by the result of this investigation.
Ide, Hiroshi; Sakuta, Yoshiyuki; Hanawa, Yoshio; Tsuji, Tomoyuki; Tsuboi, Kazuaki; Nagao, Yoshiharu; Miyazawa, Masataka
JAEA-Technology 2009-019, 28 Pages, 2009/06
The main body of the JMTR is composed of reactor pressure vessel, core and reactor pool. At the bottom of the reactor pool, the Diaphragm-seal (2.6m outer diameter, 2m inner diameter, thickness 1.5mm) of the JMTR made of stainless steel is installed to prevent the water leak of the reactor pool and to absorb the expansion of the reactor pressure vessel due to pressure and temperature changes. Prior to the refurbishment of the JMTR, the inspection device which is a deposition-collection apparatus with underwater-camera was developed, and the visual inspection was carried out to confirm the soundness of the diaphragm-seal. As a result, harmful flaws and/or corrosions were not inspected in the visual inspection, and the soundness of the diaphragm seal was confirmed. In future, the long-term integrity of the diaphragm-seal will could be achieved by conducting the periodic inspection.
Ito, Haruhiko; Ide, Hiroshi; Yamaura, Takayuki; Tsuji, Tomoyuki
JAERI-Review 2004-001, 39 Pages, 2004/02
no abstracts in English