Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 105

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

One-dimensional spinon spin currents

Hirobe, Daichi*; Sato, Masahiro*; Kawamata, Takayuki*; Shiomi, Yuki*; Uchida, Kenichi*; Iguchi, Ryo*; Koike, Yoji*; Maekawa, Sadamichi; Saito, Eiji

Nature Physics, 13(1), p.30 - 34, 2017/01

 Times Cited Count:91 Percentile:96.69(Physics, Multidisciplinary)

JAEA Reports

Radiation monitoring using manned helicopter around the Fukushima Daiichi Nuclear Power Station in the fiscal year 2014 (Contract research)

Sanada, Yukihisa; Mori, Airi; Ishizaki, Azusa; Munakata, Masahiro; Nakayama, Shinichi; Nishizawa, Yukiyasu; Urabe, Yoshimi; Nakanishi, Chika; Yamada, Tsutomu; Ishida, Mutsushi; et al.

JAEA-Research 2015-006, 81 Pages, 2015/07

JAEA-Research-2015-006.pdf:22.96MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (NPS), Tokyo Electric Power Company (TEPCO), caused by the East Japan earthquake and the following tsunami occurred on March 11, 2011, a large amount of radioactive materials was released from the NPP. These results of the aerial radiation monitoring using the manned helicopter in the fiscal 2014 were summarized in the report.

Journal Articles

Managing beryllium in nuclear facility applications

Longhurst, G. R.*; Tsuchiya, Kunihiko; Dorn, C.*; Folkman, S. L.*; Fronk, T. H.*; Ishihara, Masahiro; Kawamura, Hiroshi; Tranter, T. N.*; Rohe, R.*; Uchida, Munenori*; et al.

Nuclear Technology, 176(3), p.430 - 441, 2011/12

 Times Cited Count:9 Percentile:66.95(Nuclear Science & Technology)

Beryllium has important roles in nuclear facilities such as fission reactors and fusion reactors. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. In both applications, the beryllium and the impurities in it become activated by neutrons transmutating to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant $$^{60}$$Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient $$^{14}$$C and $$^{94}$$Nb to render the irradiated beryllium "Greater-Than-Class-C" for disposal in US radioactive waste facilities. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:176 Percentile:99.41(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:7 Percentile:49.81(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

Journal Articles

Establishment of neutron fluence monitoring techniques for quasi-monoenergetic neutron calibration fields of high energy at TIARA

Shikaze, Yoshiaki; Tanimura, Yoshihiko; Saegusa, Jun; Tsutsumi, Masahiro; Uchida, Yoshiaki*; Yoshizawa, Michio; Harano, Hideki*; Matsumoto, Tetsuro*; Mizuhashi, Kiyoshi

JAEA-Review 2010-065, JAEA Takasaki Annual Report 2009, P. 158, 2011/01

no abstracts in English

Journal Articles

Isoscalar giant resonances in the Sn nuclei and implications for the asymmetry term in the nuclear-matter incompressibility

Li, T.*; Garg, U.*; Liu, Y.*; Marks, R.*; Nayak, B. K.*; Madhusudhana Rao, P. V.*; Fujiwara, Mamoru*; Hashimoto, Hisanobu*; Nakanishi, Kosuke*; Okumura, Shun*; et al.

Physical Review C, 81(3), p.034309_1 - 034309_11, 2010/03

 Times Cited Count:100 Percentile:97.44(Physics, Nuclear)

Journal Articles

Current statues of phase II investigations, Mizunami Underground Research Laboratory (MIU) Project

Tsuruta, Tadahiko; Uchida, Masahiro; Hama, Katsuhiro; Matsui, Hiroya; Takeuchi, Shinji; Amano, Kenji; Takeuchi, Ryuji; Saegusa, Hiromitsu; Matsuoka, Toshiyuki; Mizuno, Takashi

Proceedings of 12th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM '09/DECOM '09) (CD-ROM), 8 Pages, 2009/10

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2009

Takeuchi, Shinji; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Amano, Kenji; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2009-017, 29 Pages, 2009/08

JAEA-Review-2009-017.pdf:3.69MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2009 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

Journal Articles

An Empirical probabilistic approach for constraining the uncertainty of long-term solute transport predictions in fractured rock using in situ tracer experiments

Uchida, Masahiro; Dershowitz, W.*; Lee, G.*; Shuttle, D.*

Hydrogeology Journal, 17(5), p.1093 - 1110, 2009/07

 Times Cited Count:8 Percentile:27.77(Geosciences, Multidisciplinary)

This paper addresses a residual uncertainty after the in-situ tracer experiment and try to demonstrate the usefulness of tracer experiments for safety assessment. There have been long debate on the usefulness of in-situ tracer experiment, because the difference in temporal scale, where in-situ tracer experiments are generally conducted for the period of a few days to several months with high velocity to recover the tracers, whereas safety assessment requires more than ten thousand years with much slower velocity. This paper addresses the issue by comparing breakthrough curves for safety assessment conditions (long-term, slow velocity) with and without calibration to in-situ tracer experiment called STT-1b test at the Aspo Hard Rock Laboratory in Sweden. Authors newly developed a conceptual model of internal structure of fracture, which explicitly addresses fault gouge, coating minerals, altered zone and intact rock, since especially fault gouge has high porosity and likely to affect the tracer migration behavior. The result was that calibrated model showed much tighter distribution of breakthrough curve statistics indicating the constraining power of in-situ tracer experiment.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2007

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Mizuno, Takashi; et al.

JAEA-Review 2009-002, 88 Pages, 2009/03

JAEA-Review-2009-002-1.pdf:29.31MB
JAEA-Review-2009-002-2.pdf:35.38MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2007 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2006

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Yoshida, Haruo*; et al.

JAEA-Review 2009-001, 110 Pages, 2009/03

JAEA-Review-2009-001.pdf:49.84MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2006 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2005

Nishio, Kazuhisa; Matsuoka, Toshiyuki; Mikake, Shinichiro; Tsuruta, Tadahiko; Amano, Kenji; Oyama, Takuya; Takeuchi, Ryuji; Saegusa, Hiromitsu; Hama, Katsuhiro; Yoshida, Haruo*; et al.

JAEA-Review 2008-073, 99 Pages, 2009/03

JAEA-Review-2008-073-1.pdf:37.33MB
JAEA-Review-2008-073-2.pdf:37.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following results of the research and development performed in 2005 fiscal year, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2008

Nishio, Kazuhisa; Oyama, Takuya; Mikake, Shinichiro; Mizuno, Takashi; Saegusa, Hiromitsu; Takeuchi, Ryuji; Amano, Kenji; Tsuruta, Tadahiko; Hama, Katsuhiro; Seno, Yasuhiro; et al.

JAEA-Review 2008-072, 28 Pages, 2009/02

JAEA-Review-2008-072.pdf:11.8MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at the MIU project is planned to be carried out in three phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document presents the following 2008 fiscal year plan based on the MIU Master Plan updated in 2002, (1) Investigation Plan, (2) Construction Plan, (3) Research Collaboration Plan, etc.

Journal Articles

Carbon-14 transfer into rice plants from a continuous atmospheric source; Observations and model predictions

Koarashi, Jun; Davis, P. A.*; Galeriu, D.*; Melintescu, A.*; Saito, Masahiro*; Siclet, F.*; Uchida, Shigeo*

Journal of Environmental Radioactivity, 99(10), p.1671 - 1679, 2008/10

 Times Cited Count:12 Percentile:27.87(Environmental Sciences)

Carbon-14 ($$^{14}$$C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on $$^{14}$$C in airborne emissions, in atmospheric CO$$_{2}$$ and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived $$^{14}$$C on the public, but suggested a minor contribution of the TRP-derived $$^{14}$$C to atmospheric $$^{14}$$C concentrations, and an influence on $$^{14}$$C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which $$^{14}$$C concentrations in air and rice predicted with various models were compared with observed concentrations. The modelling results showed that Gaussian plume models with different assumptions predict monthly-averaged $$^{14}$$C concentrations in air well and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in $$^{14}$$C concentrations in rice grain.

Journal Articles

Simple model representations of transport in a complex fracture and their effects on long-term predictions

Tsang, C.-F.*; Doughty, C.*; Uchida, Masahiro

Water Resources Research, 44(8), p.W08445_1 - W08445_13, 2008/08

 Times Cited Count:7 Percentile:22.28(Environmental Sciences)

no abstracts in English

Journal Articles

Application of real time PCR for the quantitative detection of radiation-induced genomic DNA strand breaks

Yamauchi, Emiko*; Watanabe, Ritsuko; Oikawa, Miyoko*; Fujimoto, Hirofumi*; Yamada, Akinori*; Saito, Kimiaki; Murakami, Masahiro*; Hashido, Kazuo*; Tsuchida, Kozo*; Takada, Naoko*; et al.

Journal of Insect Biotechnology and Sericology, 77(1), p.17 - 24, 2008/02

The frequency of single strand breaks (SSBs) occurring on both strands of the pBR322 plasmid DNA region flanked by a pair of primers used for polymerase chain reaction (PCR) amplifications was determined after irradiation with $$^{137}$$Cs $$gamma$$-rays. We refined that real time PCR is suitable for the detection and quantitative analysis of SSBs caused by $$gamma$$-ray irradiation. The utility of this approach was also supported by the comparison of the practical experimental data with the Monte Carlo simulation. The potential application of this PCR method for the detection of genomic DNA damage was also confirmed.

JAEA Reports

Mizunami Underground Research Laboratory project program for fiscal year 2007

Nishio, Kazuhisa; Mizuno, Takashi; Oyama, Takuya; Nakama, Shigeo; Saegusa, Hiromitsu; Takeuchi, Ryuji; Amano, Kenji; Tsuruta, Tadahiko; Hama, Katsuhiro; Iyatomi, Yosuke; et al.

JAEA-Review 2007-038, 31 Pages, 2007/12

JAEA-Review-2007-038.pdf:11.5MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three Phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the Project is under the Construction Phase. This document presents the following 2007 fiscal year plan of the Construction Phase based on the MIU Master Plan updated in 2002, (1)Investigation Plan at the MIU Construction Site, (2)Construction Plan at the MIU Construction Site, (3)Research Collaboration Plan.

JAEA Reports

Mizunami Underground Research Laboratory project program for fiscal year 2006

Nishio, Kazuhisa; Mizuno, Takashi; Oyama, Takuya; Nakama, Shigeo; Saegusa, Hiromitsu; Takeuchi, Ryuji; Amano, Kenji; Tsuruta, Tadahiko; Hama, Katsuhiro; Iyatomi, Yosuke; et al.

JAEA-Review 2007-037, 29 Pages, 2007/12

JAEA-Review-2007-037.pdf:13.06MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is developing a geoscientific research project named Mizunami Underground Research Laboratory (MIU) in crystalline rock environment in order to establish scientific and technological basis for geological disposal of HLW. Geoscientific research at MIU is planned to be carried out in three Phases over a period of 20 years; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the Project is under the Construction Phase. This document presents the following 2006 fiscal year plan of the Construction Phase based on the MIU Master Plan updated in 2002, (1)Investigation Plan at the MIU Construction Site, (2)Construction Plan at the MIU Construction Site, (3)Research Collaboration Plan.

Journal Articles

Investigation of properties of the TIARA neutron beam facility of importance for calibration applications

Shikaze, Yoshiaki; Tanimura, Yoshihiko; Saegusa, Jun; Tsutsumi, Masahiro; Yamaguchi, Yasuhiro; Uchida, Yoshiaki*

Radiation Protection Dosimetry, 126(1-4), p.163 - 167, 2007/08

 Times Cited Count:3 Percentile:25.53(Environmental Sciences)

For neutron energy more than 20 MeV, the international standard of the calibration fields and techniques has not been established. Therefore, by using the quasi-monoenergetic neutron irradiation field of 40-90 MeV at TIARA of JAEA Takasaki, we are developing the calibration field. Here we evaluated the properties of the neutron field, where neutrons were produced in the nuclear reaction of the Li target with 45, 50 and 70 MeV protons. We investigated the neutron beam profile at different distance from the target by using the imaging plates with a polyethylene converter to measure the recoil protons produced in the converter. From the results, properties of the neutron beam profile were found as follows: (1) Irradiation field area was fixed geometrically by the distance from the target and the diameter of the collimator exit; (2) The beam intensity within the irradiation field was in inverse proportion to the square of the distance from the target. Also, we measured the peak energy and energy spectrum of neutron through TOF method by using organic liquid scintillation detector. Then we evaluated the energy spectra of the scattered neutrons at various positions outside the irradiation field through unfolding method. The FORIST unfolding code and the response of SCINFUL-QMD code were used here. From the neutron energy spectra obtained in the different method mentioned above, peak fluence for on-beam position was evaluated comparing with the results in previous evaluation of the neutron field at TIARA.

105 (Records 1-20 displayed on this page)