Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Mechanical Engineering Journal (Internet), 7(3), p.19-00489_1 - 19-00489_16, 2020/06

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

Journal Articles

A Conceptual design study of pool-type sodium-cooled fast reactor with enhanced anti-seismic capability

Kubo, Shigenobu; Chikazawa, Yoshitaka; Ohshima, Hiroyuki; Uchita, Masato*; Miyagawa, Takayuki*; Eto, Masao*; Suzuno, Tetsuji*; Matoba, Ichiyo*; Endo, Junji*; Watanabe, Osamu*; et al.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

The authors are developing the design concept of pool-type sodium-cooled fast reactor (SFR) that addresses Japan's specific siting conditions such as earthquakes and meets safety design criteria (SDC) and safety design guidelines (SDGs) for Generation IV SFRs. The development of this concept will broaden not only options for reactor types in Japan but also the range and depth of international cooperation. A design concept of 1,500 MWt (650 MWe) class pool-type SFR was thought up by applying design technology obtained from the design of advanced loop-type SFR, named JSFR, equipped with safety measures that reflect results from the feasibility study on commercialized fast reactor cycle systems and fast reactor cycle technology development, improved maintainability and repairability, and lessons learned from the Fukushima Daiichi Nuclear Power Plants accident.

JAEA Reports

Proceedings of the 2017 Symposium on Nuclear Data; November 16-17, 2017, iVil, Tokai-mura, Ibaraki, Japan

Nishio, Katsuhisa; Utsuno, Yutaka; Chiba, Satoshi*; Koura, Hiroyuki; Iwamoto, Osamu; Nakamura, Shoji

JAEA-Conf 2018-001, 226 Pages, 2018/12

JAEA-Conf-2018-001.pdf:22.81MB

The 2017 Symposium on Nuclear Data was held at iVil in Tokai on November 16-17, 2017. The symposium was hosted by the Nuclear Data Division of the Atomic Energy Society of Japan (AESJ) and Advanced Science Research Center of Japan Atomic Energy Agency, and co-hosted by Japanese Nuclear Data Committee of AESJ and North Kanto Branch of AESJ. In the symposium, a tutorial was given by Prof. Rykaczewski (ORNL) "New nuclear data from total absorption spectroscopy and beta-delayed neutron measurements", as well as six oral sessions, "Nuclear Physics and Nuclear Data" (two sessions), "Nuclear Theory and Nuclear Data", "Reactors" and "Nuclear Data and Their Applications" (two sessions). In addition, recent advances in experiment, theory, evaluation, benchmark, and application were presented in the poster session. The symposium had 79 participants, who contributed to very active and fruitful discussions. This report consists of 37 papers, including those of 14 oral and 23 poster presentations.

Journal Articles

Non-destructive examination of jacket sections for ITER central solenoid conductors

Takahashi, Yoshikazu; Suwa, Tomone; Nabara, Yoshihiro; Ozeki, Hidemasa; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Matsui, Kunihiro; Kawano, Katsumi; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 25(3), p.4200904_1 - 4200904_4, 2015/06

 Times Cited Count:0 Percentile:0(Engineering, Electrical & Electronic)

The Japan Atomic Energy Agency (JAEA) is responsible for procuring all amounts of Central Solenoid (CS) Conductors for ITER, including CS jacket sections. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A total of 576 Nb$$_{3}$$Sn strands and 288 copper strands are cabled around the central spiral. The maximum operating current is 40 kA at magnetic field of 13 T. CS jacket section is circular in square type tube made of JK2LB, which is high manganese stainless steel with boron added. Unit length of jacket sections is 7 m and 6,300 sections will be manufactured and inspected. Outer/inner dimension and weight are 51.3/35.3 mm and around 90 kg, respectively. Eddy Current Test (ECT) and Phased Array Ultrasonic Test (PAUT) were developed for non-destructive examination. The defects on inner and outer surfaces can be detected by ECT. The defects inside jacket section can be detected by PAUT. These technology and the inspected results are reported in this paper.

Journal Articles

Cable twist pitch variation in Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Nabara, Yoshihiro; Hemmi, Tsutomu; Nunoya, Yoshihiko; Isono, Takaaki; Hamada, Kazuya; Matsui, Kunihiro; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 23(3), p.4801504_1 - 4801504_4, 2013/06

 Times Cited Count:11 Percentile:55.01(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency (JAEA) is the first to start the mass production of the TF conductors in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The height and width of the TF coils are 14 m and 9 m, respectively. The conductor is cable-in-conduit conductor (CICC) with a central spiral. A circular multistage superconducting cable is inserted into a circular stainless steel jacket with a thickness of 2 mm. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and the cable is inserted into a round-in-round stainless steel jacket. It was observed that the cabling pitch of the destructive sample is longer than the original pitch at cabling. The JAEA carried out the tensile tests of the cable and the measurement of the cable rotation during the insertion to investigate the cause of the elongation. The cause of elongation was clarified and the results will be described in this paper.

Journal Articles

Mass production of Nb$$_{3}$$Sn conductors for ITER toroidal field coils in Japan

Takahashi, Yoshikazu; Isono, Takaaki; Hamada, Kazuya; Nunoya, Yoshihiko; Nabara, Yoshihiro; Matsui, Kunihiro; Hemmi, Tsutomu; Kawano, Katsumi; Koizumi, Norikiyo; Oshikiri, Masayuki; et al.

IEEE Transactions on Applied Superconductivity, 22(3), p.4801904_1 - 4801904_4, 2012/06

 Times Cited Count:7 Percentile:44.38(Engineering, Electrical & Electronic)

Japan Atomic Energy Agency is the first to start the mass production of the TF conductors in Phase IV in March 2010 among the 6 parties who are procuring TF conductors in the ITER project. The conductor is cable-in-conduit conductor with a central spiral. A total of 900 Nb$$_{3}$$Sn strands and 522 copper strands are cabled around the central spiral and then wrapped with stainless steel tape whose thickness is 0.1 mm. Approximately 60 tons of Nb$$_{3}$$Sn strands were manufactured by the two suppliers in December 2010. This amount corresponds to approximately 55% of the total contribution from Japan. Approximately 30% of the total contribution from Japan was completed as of February 2011. JAEA is manufacturing one conductor per month under a contract with two Japanese companies for strands, one company for cabling and one company for jacketing. This paper summarizes the technical developments including a high-level quality assurance. This progress is a significant step in the construction of the ITER machine.

JAEA Reports

Review of procedure for exchanging neutron detector in JRR-3 start-up channels (Exchanging and testing manual)

Ota, Kazunori; Kurumada, Osamu; Nio, Daisuke; Uno, Yuki; Murayama, Yoji

JAEA-Testing 2011-004, 47 Pages, 2011/08

JAEA-Testing-2011-004.pdf:1.92MB

The JRR-3 start-up channels, used for monitoring neutron flux during the start-up procedure, are exchanged periodically. The exchange procedure was reviewed and improved to the JRR-3 start-up channels exchanging manual. Following the manual, exchanging work would be carried out adequately.

Journal Articles

Development of conduits for the ITER central solenoid conductor

Hamada, Kazuya; Nakajima, Hideo; Kawano, Katsumi; Takano, Katsutoshi; Tsutsumi, Fumiaki; Okuno, Kiyoshi; Fujitsuna, Nobuyuki*; Teshima, Osamu*

Teion Kogaku, 43(6), p.244 - 251, 2008/06

Japan Atomic Energy Agency has developed JK2LB conduit for the Nb$$_{3}$$Sn conductor of the ITER Central Solenoid. Mechanical requirements for the CS conductor conduit are 0.2% yield strength of more than 900 MPa and fracture toughness K $$_{IC}$$(J) of more than 130 MPa$$sqrt{m}$$ after a compaction and aging heat treatment (650 $$^{circ}$$C, 240 hours). In the previous work, aged JK2LB conduit has shown high strength and fracture toughness enough to satisfy the requirements. As a next step, work was performed to determine specification of the JK2LB conduit taking account of cold work including compaction and winding, and to simplify its fabrication process. To simulate the cold work effect and aging, mechanical tests were performed at 4.2 K on laboratory scale (20-30kg) ingot samples. It was found that the sum of carbon and nitrogen content should be in a range from 0.11% to 0.18% to achieve the ITER mechanical requirements. To obtain a grain size of conduit as well as that of small ingot sample, applicable solution heat treatment temperature and holding time were studied. In order to simplify the billet production process, we confirmed internal metallurgical qualities of JK2LB cast ingot. Since significant segregation was not observed, we could exclude an electroslag remelting process. Based on above achievements, full size JK2LB conduits were fabricated and satisfied the ITER mechanical requirements.

Journal Articles

Development of jacketing technologies for ITER CS and TF conductor

Hamada, Kazuya; Nakajima, Hideo; Matsui, Kunihiro; Kawano, Katsumi; Takano, Katsutoshi; Tsutsumi, Fumiaki; Okuno, Kiyoshi; Teshima, Osamu*; Soejima, Koji*

AIP Conference Proceedings 986, p.76 - 83, 2008/03

The ITER Toroidal Field (TF) coil and Central Solenoid (CS) use Nb$$_{3}$$Sn cable-in-conduit conductor. Conductor fabrication process are as follows; (1) Fabrication of jacket. (2) Butt welding of jacket to make a long tube (CS: 880 m, TF: 760 m) and insertion of superconducting cable into jacket. (3) Compaction of jacket. (4) Winding for transportation. JAEA has developed jacketing technologies in the cooperation with industries. Major achievements are as follows; (1) Full scale TF and CS jackets were fabricated using low carbon SUS316LN and boron added and high manganese stainless steel (JK2LB), respectively. The jackets satisfied ITER mechanical and dimensional requirement. (2) Butt welding condition was studied to obtain good internal surface condition of welded joint. (3) Compaction machine was constructed. As results of compaction test of TF and CS jacket, compacted jacket dimensions satisfied ITER requirement. Therefore, JAEA demonstrated jacketing technologies for ITER conductor.

Journal Articles

The H-Invitational Database (H-InvDB); A Comprehensive annotation resource for human genes and transcripts

Yamasaki, Chisato*; Murakami, Katsuhiko*; Fujii, Yasuyuki*; Sato, Yoshiharu*; Harada, Erimi*; Takeda, Junichi*; Taniya, Takayuki*; Sakate, Ryuichi*; Kikugawa, Shingo*; Shimada, Makoto*; et al.

Nucleic Acids Research, 36(Database), p.D793 - D799, 2008/01

 Times Cited Count:51 Percentile:74.53(Biochemistry & Molecular Biology)

Here we report the new features and improvements in our latest release of the H-Invitational Database, a comprehensive annotation resource for human genes and transcripts. H-InvDB, originally developed as an integrated database of the human transcriptome based on extensive annotation of large sets of fulllength cDNA (FLcDNA) clones, now provides annotation for 120 558 human mRNAs extracted from the International Nucleotide Sequence Databases (INSD), in addition to 54 978 human FLcDNAs, in the latest release H-InvDB. We mapped those human transcripts onto the human genome sequences (NCBI build 36.1) and determined 34 699 human gene clusters, which could define 34 057 protein-coding and 642 non-protein-coding loci; 858 transcribed loci overlapped with predicted pseudogenes.

Journal Articles

Electrochemical evaluation of the distribution of a metal ion at the aqueous$$|$$organic solution interface in chelate extraction

Uehara, Akihiro*; Kasuno, Megumi*; Okugaki, Tomohiko*; Kitatsuji, Yoshihiro; Shirai, Osamu*; Yoshida, Zenko; Kihara, Sorin*

Journal of Electroanalytical Chemistry, 604(2), p.115 - 124, 2007/06

The distribution ratio of a metal ion between an aqueous solution and an organic solution in solvent extraction with a chelating agent was evaluated by using physicochemical constants determined electrochemically such as standard Gibbs energies for transfers of the ions, the overall complex formation constants and the acid dissociation constants of the chelating agent. The distribution ratio thus evaluated agreed well with those determined by the distribution experiment.

JAEA Reports

Design study on sodium-cooled reactor; Results of the studies in 2004 (Joint research)

Hishida, Masahiko; Murakami, Tsutomu*; Kisohara, Naoyuki; Fujii, Tadashi; Uchita, Masato*; Hayafune, Hiroki; Chikazawa, Yoshitaka; Usui, Shinichi; Ikeda, Hirotsugu; Uno, Osamu; et al.

JAEA-Research 2006-006, 125 Pages, 2006/03

JAEA-Research-2006-006.pdf:11.55MB

In Phase I of the "Feasibility Studies on Commercialized Fast Reactor Cycle Systems (F/S)", an advanced loop type reactor has been selected as a promising concept of sodium-cooled reactor, which has a possibility to fulfill the design requirements of the F/S. In Phase II, design improvement for further cost reduction and the establishment of the plant concept has been performed. In this study, reactor core design and large-scale plant design have been performed by adopting the modified fuel assembly with inner duct structure and double-wall straight tube steam generator (SG), which concepts were chosen at the interim review of FY 2003. For this SG, safety logics have been studied and the structural concept has been established. And the plant designs improving the in-service inspection (ISI) and repair capability have been performed. Furthermore, elaborate confirmation of the design has been performed reflecting the development of elemental technology, back-up concepts have been proposed. Besides, cost reduction measures have been studied by reducing reactor grade materials, introducing autonomous standardizations, simplifying the design due to deregulation and adopting systemized standards for BOP and NSSS. From now on, reflecting the results of elemental experiments, in-depth design studies and examination of critical issues will be carried out and the plant concept will accomplish in preparation for the final evaluation in Phase II.

JAEA Reports

Design Study on Sodium-Cooled Large-Scale Reactor

Murakami, Tsutomu; Hishida, Masahiko; Kisohara, Naoyuki; Hayafune, Hiroki; Hori, Toru; Fujii, Tadashi; Uchita, Masato; Chikazawa, Yoshitaka; Uno, Osamu; Saigusa, Toshiie; et al.

JNC TY9400 2004-014, 78 Pages, 2004/07

JNC-TY9400-2004-014.pdf:7.97MB

This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2003, which is the third year of Phase 2. In the JFY2003 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated. In addition, as the interim evaluation of the candidate concept of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three large-scale reactor candidate concepts were prepared.

JAEA Reports

Design Study on Sodium-Cooled Middle-Scale Modular Reactor

Hishida, Masahiko; Murakami, Tsutomu; Kisohara, Naoyuki; Fujii, Tadashi; Uchita, Masato; Hayafune, Hiroki; Chikazawa, Yoshitaka; Hori, Toru; Saigusa, Toshiie; Uno, Osamu; et al.

JNC TY9400 2004-012, 97 Pages, 2004/07

JNC-TY9400-2004-012.pdf:12.55MB

Based on the concept of a plant consisting of four modules with a capacity of 750 MWe each, which has been established by the end of FY2002, a concept of the entire plant was proposed, reflecting the modifications related to the high internal conversion type core, the double-wall straight tube steam generator (SG), and the fuel storage system. Concept studies were also performed to overcome the drawbacks of the sodium and to achieve in-service inspection and repair as easily as in light water reactor. Furthermore, feasibility studies were carried out to confirm the design, which included safety, thermal-hydraulics and the structures of the primary reactor auxiliary cooling system and the double-wall straight tube SG. A prospect for realization of this plant concept has been obtained through the evaluation results. In addition, as the interim evaluation of the candidate concepts of the FBR fuel cycle is to be conducted, cost effectiveness and achievability for the development goal were evaluated and the data of the three medium-scale reactor candidate concepts were prepared.

JAEA Reports

Feasibility Study on Commercialization of Fast Breeder Reactor Cycle Systems Interim Report of Phase II; Technical Study Report for Reactor Plant Systems

Konomura, Mamoru; Ogawa, Takashi; Okano, Yasushi; Yamaguchi, Hiroyuki; Murakami, Tsutomu; Takaki, Naoyuki; Nishiguchi, Youhei; Sugino, Kazuteru; Naganuma, Masayuki; Hishida, Masahiko; et al.

JNC TN9400 2004-035, 2071 Pages, 2004/06

JNC-TN9400-2004-035.pdf:76.42MB

The attractive concepts for Sodium-, lead-bismuth-, helium- and water-cooled FBRs have been created through using typical plant features and employing advanced technologies. Efforts on evaluating technological prospects of feasibility have been paid for these concepts. Also, it was comfirmed if these concepts satisfy design requierments of capability and performance presumed in the feasibilty study on commertialization of Fast Breeder Reactor Systems. As results, it was concluded that the selection of sodium-cooled reactor was most rational for practical use of FBR technologies in 2015.

JAEA Reports

Design Study on Sodium-Cooled Middle-Scale Modular Reactor

Kisohara, Naoyuki; Hishida, Masahiko; Nibe, Nobuaki; Hori, Toru; Fujii, Tadashi; Uchita, Masato; Chikazawa, Yoshitaka; Saigusa, Toshiie; Uno, Osamu; Soman, Yoshindo; et al.

JNC TY9400 2003-015, 103 Pages, 2003/09

JNC-TY9400-2003-015.pdf:6.39MB

In Phase I of the "Feasibility Study on Commercialized Fast Reactor Cycle Systems (F/S)", an advanced loop type reactor has been selected as a promising concept of sodium-cooled middle-scale modular reactor, which has a possibility to fulfill the design requirements of the F/S. This report summarizes the results of the design study on the sodium-cooled middle-scale modular reactor performed in JFY2002, which is the second year of Phase 2. The construction cost of the sodium-cooled middle-scale modular reactor, which has been constructed in JFY2002, was almost achieved the economical goal. But its achievability was not sufficient to accept the concept. In order to reduce the construction cost, the plant concept has been re-constructed based on the 50 MWe plant studied in JFY2002. After that, fundamental specifications of main systems and components for the new concept have been set, and critical subjects have been examined and evaluated. In addition, in order to achieve the further cost reduction, the plant with simplified secondary system, the plant with electric magnetic pump in secondary system, and the fuel handling system are examined and evaluated. As a result of this study, the plant concept of the sodium-cooled middle-scale modular reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000 yens/kWe, etc.) and has a prospect to solve the critical subjects. From now on, reflecting the results of elemental experiments, the preliminary conceptual design of this plant will be preceded toward the selection for narrowingdown candidate concepts at the end of Phase 2.

JAEA Reports

Design Study on Sodium-Cooled Large-Scale Reactor

Kisohara, Naoyuki; Hishida, Masahiko; Nibe, Nobuaki; Hori, Toru; Fujii, Tadashi; Uchita, Masato; Chikazawa, Yoshitaka; Saigusa, Toshiie; Uno, Osamu; Soman, Yoshindo; et al.

JNC TY9400 2003-014, 52 Pages, 2003/09

JNC-TY9400-2003-014.pdf:3.12MB

In Phase 2 of the F/S, it is planed to precede a preliminary conceptual design of a sodium-cooled large-scale reactor based on the design of the advanced loop type reactor. Through the design study, it is intended to construct such a plant concept that can show its attraction and competitiveness as a commercialized reactor. This report summarizes the results of the design study on the sodium-cooled large-scale reactor performed in JFY2002, which is the second year of Phase 2. In the JFY2002 design study, critical subjects related to safety, structural integrity and thermal hydraulics which found in the last fiscal year has been examined and the plant concept has been modified. Furthermore, fundamental specifications of main systems and components have been set and economy has been evaluated.As a result of this study, the plant concept of the sodium-cooled large-scale reactor has been constructed, which has a prospect to satisfy the economic goal (construction cost: less than 200,000yens/kWe, etc.) and has a prospect to solve the critical subjects.

JAEA Reports

Development of the fabrication technology for the superconducting coils in the ITER magnet system and its achievements

Hamada, Kazuya; Nakajima, Hideo; Okuno, Kiyoshi; Endo, Sakaru*; Kikuchi, Kenichi*; Kubo, Yoshio*; Aoki, Nobuo*; Yamada, Yuichi*; Osaki, Osamu*; Sasaki, Takashi*; et al.

JAERI-Tech 2002-027, 23 Pages, 2002/03

JAERI-Tech-2002-027.pdf:2.94MB

The Engineering Design Activities (EDA) for the International Thermonuclear Experimental Reactor (ITER) was performed under the collaboration of Japan, EU, Russia and the US. The EDA was successfully completed in July 2001, in which the development of fabrication technology for advanced components, such as superconducting coils, was conducted. The ITER magnet system consists of Toroidal Field coils, a Central Solenoid (CS), Poloidal Field coils and Correction coils. The construction of these coils requires advanced technologies that fairly exceeded those available at the start of the EDA. Therefore, CS Model Coil and TF Model Coil projects were implemented. To fabricate the CS Model Coil, the fabrication technologies for high performance strand, large cable, winding, heat treatment, joint and insulation are indispensable. This report describes the above detailed fabrication technologies successfully developed in the CS Model Coil Project.

Journal Articles

Completion of the ITER CS model coil-outer module fabrication

Ando, Toshinari; Hiyama, Tadao; Takahashi, Yoshikazu; Nakajima, Hideo; Kato, Takashi; Isono, Takaaki; Sugimoto, Makoto; Kawano, Katsumi; Koizumi, Norikiyo; Nunoya, Yoshihiko; et al.

IEEE Transactions on Applied Superconductivity, 10(1), p.568 - 571, 2000/03

 Times Cited Count:10 Percentile:54.49(Engineering, Electrical & Electronic)

no abstracts in English

Oral presentation

Fracture mechanics analysis of ITER toroidal field coil

Onodera, Osamu*; Iguchi, Masahide*; Saito, Masakatsu*; Hamada, Kazuya; Nakajima, Hideo; Okuno, Kiyoshi; Sugimoto, Makoto; Nakahira, Masataka; Kitamura, Kazunori; Takayanagi, Tadatoshi*; et al.

no journal, , 

no abstracts in English

27 (Records 1-20 displayed on this page)