Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, F.*; Tang, X.*; Fei, Y.*; Zhang, J.*; Liu, J.*; Lang, P.*; Che, G.*; Zhao, Z.*; Zheng, Y.*; Fang, Y.*; et al.
Journal of the American Chemical Society, 147(17), p.14054 - 14059, 2025/04
被引用回数:0 パーセンタイル:0.00(Chemistry, Multidisciplinary)2,2'-ビピラジン(BPZ)の圧力誘起重合により結晶性グラファンナノリボン(GANR)を合成した。中性子回折データのリートベルト精密化,核磁気共鳴スペクトル,赤外スペクトル,理論計算を行った結果、BPZは
積層した芳香環の間でディールス・アルダー重合し、並外れた長距離秩序を持つ伸びたボート型GANR構造を形成することがわかった。未反応の-C=N-基がボートの両端を橋渡ししており、さらなる機能化の余地がある。このGANRのバンドギャップは2.25eVであり、光電応答は良好である(I
/I
=18.8)。われわれの研究は、高圧トポケミカル重合法が、特定の構造と望んだ特性を持つグラファンの精密な合成に有望な方法であることを強調している。
Rajeev, H. S.*; Hu, X.*; Chen, W.-L.*; Zhang, D.*; Chen, T.*; 古府 麻衣子*; 梶本 亮一; 中村 充孝; Chen, A. Z.*; Johnson, G. C.*; et al.
Journal of the Physical Society of Japan, 94(3), p.034602_1 - 034602_14, 2025/03
被引用回数:0 パーセンタイル:0.00(Physics, Multidisciplinary)Two-dimensional hybrid organic-inorganic perovskites (HOIPs) have emerged as promising materials for light-emitting diode applications. In this study, by using time-of-flight neutron spectroscopy we identified and quantitatively separated the lattice vibrational and molecular rotational dynamics of two perovskites, butylammonium lead iodide (BA)PbI
and phenethyl-ammonium lead iodide (PEA)
PbI
. By examining the corresponding temperature dependence, we found that the lattice vibrations, as evidenced by neutron spectra, are consistent with the lattice dynamics obtained from Raman scattering. We revealed that the rotational dynamics of organic molecules in these materials tend to suppress their photoluminescence quantum yield (PLQY) while the vibrational dynamics did not show predominant correlations with the same. Additionally, we observed photoluminescence emission peak splitting for both systems, which becomes prominent above certain critical temperatures where the suppression of PLQY begins. This study suggests that the rotational motions of polarized molecules may lead to a reduction in exciton binding energy or the breaking of degeneracy in exciton binding energy levels, enhancing non-radiative recombination rates, and consequently reducing photoluminescence yield. These findings offer a deeper understanding of fundamental interactions in 2D HOIPs and could guide the design of more efficient light-emitting materials for advanced technological applications.
Qin, T. Y.*; Hu, F. F.*; 徐 平光; Zhang, H.*; Zhou, L.*; Ao, N.*; Su, Y. H.; 菖蒲 敬久; Wu, S. C.*
International Journal of Fatigue, 185, p.108336_1 - 108336_13, 2024/08
被引用回数:8 パーセンタイル:94.71(Engineering, Mechanical)Gradient distribution of triaxial residual stresses to a depth of several millimeters is retained in middle carbon steel S38C axles after high-frequency induction hardening, which has become a critical concern for fatigue structural integrity. To address this, the axial, hoop, and radial gradient residual strains inside the axles were measured for the first time by advanced neutron diffraction. The SIGINI Fortran subroutine was then adopted to reconstruct the global initial residual stress field from the measured data. Experimental and simulation results show that residual stresses of about -520 MPa (axial), -710 MPa (hoop), and -40 MPa (radial) residual stress were retained below the axle surface. Subsequently, the fatigue crack propagation behavior of S38C axles was numerically investigated in the framework of fracture mechanics. The calculated results clearly show that the compressive residual stresses at a depth of 0?3 mm from the axle surface lead to a low crack growth driving force, and that fatigue cracks do not propagate as long as the crack depth is less than 3.7 mm for hollow S38C axles. These results further indicate that the maximum defect size allowed in routine inspections is acceptable from a safety and economic point of view. Accurate measurement and characterization of the global gradient residual stress field through experiments and simulations can provide an important reference for optimizing the mileage intervals of nondestructive testing (NDT) of surface defects in these surface-strengthened railway axles.
Zhou, L.*; Zhang, H.*; Qin, T. Y.*; Hu, F. F.*; 徐 平光; Ao, N.*; Su, Y. H.; He, L. H.*; Li, X. H.*; Zhang, J. R.*; et al.
Metallurgical and Materials Transactions A, 55(7), p.2175 - 2185, 2024/07
被引用回数:3 パーセンタイル:75.40(Materials Science, Multidisciplinary)High-speed railway S38C axles undergo surface induction hardening for durability, but are susceptible to fatigue cracks from foreign object impact. The neutron diffraction method was employed to measure the residual strain in S38C axles, obtaining microscopic lattice distortion data, for the gradient layer at a depth of 8 mm under the surface. The results showed that after induction-hardening, the microscopic lattice distortion had a gradient distribution, decreasing with the distance from the surface. However, in the case of impacting speed of 600 km/m, the average microscopic lattice distortion increased with the distance from the surface, reaching a maximum augmentation of 55 pct. These findings indicate a strong experimental basis, and improve our understanding of the relationship between macroscopic residual stress and decision-making, in regard to operation and maintenance.
Zeng, Z.*; Zhou, C.*; Zhou, H.*; Han, L.*; Chi, R.*; Li, K.*; 古府 麻衣子; 中島 健次; Wei, Y.*; Zhang, W.*; et al.
Nature Physics, 20(7), p.1097 - 1102, 2024/07
被引用回数:10 パーセンタイル:94.36(Physics, Multidisciplinary)Emergent quasiparticles with a Dirac dispersion in condensed matter systems can be described by the Dirac equation for relativistic electrons, in analogy with Dirac particles in high-energy physics. For example, electrons with a Dirac dispersion have been intensively studied in electronic systems such as graphene and topological insulators. However, charge is not a prerequisite for Dirac fermions, and the emergence of Dirac fermions without a charge degree of freedom has been theoretically predicted to be realized in Dirac quantum spin liquids. These quasiparticles carry a spin of 1/2 but are charge-neutral and so are called spinons. Here we show that the spin excitations of a kagome antiferromagnet, YCu(OD)
Br
[Br
(OD)
], are conical with a spin continuum inside, which is consistent with the convolution of two Dirac spinons. The predictions of a Dirac spin liquid model with a spinon velocity obtained from spectral measurements are in agreement with the low-temperature specific heat of the sample. Our results, thus, provide spectral evidence for a Dirac quantum spin liquid state emerging in this kagome lattice antiferromagnet. However, the locations of the conical spin excitations differ from those calculated by the nearest-neighbor Heisenberg model, suggesting the Dirac spinons have an unexpected origin.
Wang, S.*; Wang, J.*; Zhang, S.*; Wei, D.*; Chen, Y.*; Rong, X.*; Gong, W.; Harjo, S.; Liu, X.*; Jiao, Z.*; et al.
Journal of Materials Science & Technology, 185, p.245 - 258, 2024/06
被引用回数:15 パーセンタイル:97.90(Materials Science, Multidisciplinary)Nanoprecipitates and nanoscale retained austenite (RA) with suitable stability play crucial roles in determining the yield strength (YS) and ductility of ultrahigh strength steels (UHSSs). However, owing to the kinetics incompatibility between nanoprecipitation and austenite reversion, it is highly challenging to simultaneously introduce high-density nanoprecipitates and optimized RA in UHSSs. In this work, through the combination of austenite reversion treatment (ART) and subsequent flash austenitizing (FA), nanoscale chemical heterogeneity was successfully introduced into a low-cost UHSS prior to the aging process. This chemical heterogeneity involved the enrichment of Mn and Ni in the austenite phase. The resulting UHSS exhibited dual-nanoprecipitation of Ni(Al,Mn) and (Mo,Cr) C and nanoscale austenite stabilized via Mn and Ni enrichment. The hard martensitic matrix strengthened by high-density dual-nanoprecipitates constrains the plastic deformation of soft RA with a relatively low fraction, and the presence of relatively stable nanoscale RA with adequate Mn and Ni enrichment leads to a marginal loss in YS but keeps a persistent transformation-induced plasticity (TRIP) effect. As a result, the newly-developed UHSS exhibits an ultrahigh YS of 1.7 GPa, an ultimate tensile strength (UTS) of 1.8 GPa, a large uniform elongation (UE) of 8.5 percent, and a total elongation (TE) of 13 percent. The strategy of presetting chemical heterogeneity to introduce proper metastable phases before aging can be extended to other UHSSs and precipitation-hardened alloys.
Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; 徐 平光; Yin, F.*
Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02
被引用回数:4 パーセンタイル:82.70(Nanoscience & Nanotechnology)The quasi-static superelastic responses and hierarchical martensite transformation from body-centered cubic (BCC) to face-centered cubic (FCC) under dynamic impact in FeMn
Al
Ni
Ti
alloys were investigated. Polycrystalline and oligocrystalline alloys were produced through solution heat treatment and cyclic heat treatment processes, respectively. The results show the volume fraction of residual martensite for oligocrystalline alloys is lower, which exhibits better superelastic responses compared with polycrystalline alloys. Dynamic impact tests indicate that, despite the weakening of the grain boundary strengthening effect, the ultimate strength of the oligocrystalline alloys closely matches that of the polycrystalline alloys under dynamic impact. The martensite transformation of the FeMnAlNiTi alloy is characterized as hierarchical under dynamic impact, and increasing strain rates and grain sizes can enhance the BCC
FCC martensite transformation, resulting in higher martensite phase fractions for oligocrystalline alloys. The increase in ultimate strength is attributed to the dynamic Hall-Petch effect introduced by more martensite phase interfaces under dynamic impact.
Hu, Q.*; Wang, Q. M.*; Zhang, T.*; Zhao, C.*; Iltaf, K. H.*; Liu, S. Q.*; 深津 勇太
Energy Reports (Internet), 9, p.3661 - 3682, 2023/12
被引用回数:10 パーセンタイル:66.70(Energy & Fuels)This study evaluates petrophysical properties of representative geological rocks in the context of injectivity, storage space, and caprock integrity for effective utilization and long-term storage of carbon dioxide. A total of 10 geological rocks were selected as representative storage media for consideration as saline aquifers & depleted oil and gas reservoirs, basalts, and cap rocks, as well as utilization in organic-rich shale and coal seams. An integrated suite of laboratory tests, including liquid immersion porosimetry, gas expansion porosimetry, grain size distribution, mercury intrusion porosimetry, and gas diffusion, were performed on these various rock samples. The results exhibit a disparity of petrophysical properties among two broad groups of rocks: rocks selected for possible storage of CO have porosities of
10-25%, permeabilities of
10
-10
m
,
m-sized pore-throat size distribution, and mostly good pore connectivity; in contrast, the potential caprocks have porosities of
0.5-5%, permeabilities of
10
-10
m
, pore throat sizes of
50 nm, and probably poorly connected pore networks. An understanding of the measured facets of pore structure and contribution of fractures is also critical in the context of different testing principles and data interpretation of petrophysical analyses, as well as observational scales in the laboratory and field, and therefore reliable confidence of CO
storage and utilization performance. Our work further illustrates the controlling influence of grain size distribution and geological processes on pore size distribution and pore connectivity for a wide range of rock types and lithologies, and particularly presents the extent and behavior of CO
gas diffusion with a custom-designed apparatus for a holistic understanding of various petrophysical attributes of widely different geological rocks.
Park, P.*; Cho, W.*; Kim, C.*; An, Y.*; Kang, Y.-G.*; Avdeev, M.*; Sibille, R.*; 飯田 一樹*; 梶本 亮一; Lee, K. H.*; et al.
Nature Communications (Internet), 14, p.8346_1 - 8346_9, 2023/12
被引用回数:21 パーセンタイル:84.93(Multidisciplinary Sciences)The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120 structure. However, a new triple-
chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co
TaS
as the first example of tetrahedral triple-
magnetic ordering with the associated topological Hall effect (non-zero
). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-
state.
Ao, N.*; Zhang, H.*; Xu, H. H.*; Wu, S. C.*; Liu, D.*; 徐 平光; Su, Y. H.; Kang, Q. H.*; Kang, G. Z.*
Engineering Fracture Mechanics, 281, p.109166_1 - 109166_14, 2023/03
被引用回数:12 パーセンタイル:83.88(Mechanics)Considering the complex service environments that high-speed railway axles are subjected to, the fatigue crack growth (FCG) behavior of a structurally gradient axle steel with different pre-crack depths both in air and corrosive medium was investigated at a frequency of 5 Hz. The results indicated that in the high region, FCG rate was dramatically accelerated by corrosion, but the gap narrows as
decreased. The accelerated corrosion FCG rate was a comprehensive result of the acceleration effect of the anodic dissolution, hydrogen-enhanced localized plasticity and the retardation effect of corrosion-induced crack-tip blunting. Despite the fact that the corrosion resistance gradually decreased as the pre-crack depth increased, the FCG rate in the corrosive medium gradually decreased. This was because fatigue loading played a more important role than corrosion in accelerating the corrosion FCG rate.
Jiang, X.*; 服部 高典; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; 矢野 真一郎*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
被引用回数:26 パーセンタイル:93.43(Chemistry, Multidisciplinary)現在の蒸気圧縮式冷凍機に代わる環境に優しい冷凍機として、バロカロリック効果に基づく固体冷凍機が世界的に注目されている。一般に、バロカロリック効果が発現する相はいずれも常圧でも存在する。ここでは、それらの物質と違って、KPFが高圧の菱面体晶相を生成することにより、巨大なバロカロリック効果を示すことを実証した。相図は、圧力依存の熱量測定、ラマン散乱測定、中性子回折測定に基づいて構築されたものである。本研究は、巨大バロカロリー効果に、高圧相の生成という新たな手法をもたらすと期待される。
Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.
Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02
被引用回数:24 パーセンタイル:88.92(Materials Science, Multidisciplinary)The present study investigates the crystallographic-texture effects on the improved fatigue resistance in the CoCrFeMnNi high-entropy alloys (HEAs) with the full-size geometry of the ASTM Standards E647-99. We exploited X-ray nano-diffraction mapping to characterize the crystal-deformation levels ahead of the crack tip after stress unloading under both constant- and tensile overloaded-fatigue conditions. The crack-tip blunting-induced much higher deformation level was concentrated surrounding the crack-tip which delays the fatigue-crack growth immediately after a tensile overload. The predominant deformation texture orientation in the Paris regime was investigated, using electron backscatter diffraction and orientation distribution function analyses. The twinning formation-driven shear deformation gave rise to the development of the Goss-type texture within the plastic deformation regime under a tensile-overloaded-fatigue condition, which was attributed to enhance the crack deflection and thus the tensile induced crack-growth-retardation period in the CoCrFeMnNi HEA.
Chen, J.*; 山本 慧; Zhang, J.*; Ma, J.*; Wang, H.*; Sun, Y.*; Chen, M.*; Liu, S.*; Gao, P.*; Yu, D.*; et al.
Physical Review Applied (Internet), 19(2), p.024046_1 - 024046_9, 2023/02
被引用回数:6 パーセンタイル:64.95(Physics, Applied)Coherent coupling in magnon based hybrid system has many potential applications in quantum information processing. Magnons can propagate in magnetically ordered materials without any motion of electrons, offering a unique method to build low-power-consumption devices and information channels free of heat dissipation. In this article, we demonstrate the coherent propagation of hybridized modes between spin waves and Love surface acoustic waves in a multiferroic BiFeO and ferromagnetic La
Sr
MnO
based heterostructure. The magneto-elastic coupling enables a giant enhancement of strength of the hybridized mode by a factor of 26 compared to that of the pure spin waves. A short wavelength down to 250 nm is demonstrated for the hybridized mode, which is desirable for nanoscale acousto-magnonic applications. Our combined experimental and theoretical analyses represent an important step towards the coherent control in hybrid magnonics, which may inspire the study of magnon-phonon hybrid systems for coherent information processing and manipulation.
Zhang, H.*; Wu, S. C.*; Ao, N.*; Zhang, J. W.*; Li, H.*; Zhou, L.*; 徐 平光; Su, Y. H.
International Journal of Fatigue, 166, p.107296_1 - 107296_11, 2023/01
被引用回数:18 パーセンタイル:83.58(Engineering, Mechanical)Abnormal damages in railway axles can lead to a significant hazard to running safety and reliability. To this end, a surface treatment was selected to effectively inhibit fatigue crack initiation and growth. In this study, a single edge notch bending fatigue test campaign with artificial notches was conducted to elucidate the fatigue crack non-propagation behavior in railway S38C axles subjected to an induction hardening process. The fatigue cracking behavior in the gradient structure was revealed by optical microscopy, electron backscatter diffraction, and fractography. The microhardness distribution was measured using a Vickers tester. The obtained results show that the microhardness of the strengthening layer is nearly triple that of the matrix. Owing to the gradient microstructures and hardness, as well as compressive residual stress, the fatigue long crack propagates faster once it passes through the hardened zone (approximately 2.0 mm in the radial depth). Thereafter, local retarding (including deflection, branching, and blunting) of the long crack occurs because of the relatively coarse ferrite and pearlite in the transition region and matrix. Totally, this fatigue cracking resistance is reasonably believed to be due to the gradient microstructure and residual stress. These findings help to tailor a suitable detection strategy for maximum defects or cracks in railway axles.
Huang, H.*; Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Li, Z. H.*; Guo, C. Y.*; Barzakh, A. E.*; Van Duppen, P.*; Andel, B.*; et al.
Physics Letters B, 833, p.137345_1 - 137345_8, 2022/10
被引用回数:1 パーセンタイル:18.16(Astronomy & Astrophysics)The decay of the 13/2 isomeric state in
Hg was observed for the first time following the
decay of the 13/2
isomer in
Pb produced in the
Nd
Cr
reaction. Using
-
delayed coincidence measurements, the half-life of this isomer was measured to be 290(30)
s. This isomer is proposed to deexcite by an unobserved low-energy
2 transition to the known 9/2
member of a strongly prolate-deformed 7/2
[514] band, followed by a 105-keV
1 transition to the bandhead. A lower limit of B(
2)
0.018 W.u. was deduced for the unobserved transition. The presumed retardation is proposed to be due to the notable shape change between the initial, nearly spherical, and the final, strongly deformed, states. A similar scenario is also considered for the 13/2
isomer in
Hg, suggesting both are cases of shape isomers. The B(
2) systematics of neutron transitions across the nuclear chart is discussed.
Van Rooyen, I. J.*; Ivan, L.*; Messner, M.*; Edwards, L.*; Abonneau, E.*; 上地 優; Lowe, S.*; Nilsson, K.-F.*; 岡島 智史; Pouchon, M.*; et al.
Proceedings of 4th International Conference on Generation IV and Small Reactors (G4SR-4), p.2 - 12, 2022/10
Developments in advanced manufacturing (AM) are occurring faster than the ability to introduce new materials and methods into design codes. Qualifying new AM technologies for use with nuclear design codes can be a long and complex process. The Generation IV International Forum (GIF) Advanced Manufacturing Materials Engineering Task Force (AMME-TF), focuses on how collaborative AM R&D could be used to decrease time to deployment of Gen-IV reactors. This paper provides a critical review of 2019 and 2021 surveys sampling nuclear reactor vendors, supply chain specialists, regulators, and other experts in GIF member countries. Both surveys confirmed that many AM technologies were considered opportunities by potential end users, although 90% of respondents identified the creation and approval of codes and standards as the greatest obstacle to their adoption. Industry prioritization on AM technologies, components and materials changed significantly during the three-year timespan. Additionally, the paper summarizes a 2021 modeling & simulation workshop that developed ideas on how to accelerate the qualification of AM and synthesizes the survey results and workshop conclusions into a review of critical research gaps and paths to address these gaps, particularly through international collaboration.
Zhang, M. M.*; Tian, Y. L.*; Wang, Y. S.*; Zhang, Z. Y.*; Gan, Z. G.*; Yang, H. B.*; Huang, M. H.*; Ma, L.*; Yang, C. L.*; Wang, J. G.*; et al.
Physical Review C, 106(2), p.024305_1 - 024305_6, 2022/08
被引用回数:5 パーセンタイル:61.57(Physics, Nuclear)The extremely neutron-deficient even-even uranium isotopes U were produced in the complete-fusion reactions induced by impinging
Ar and
Ca ions on
W targets. Fusion evaporation residues were separated in flight by the gas-filled recoil separator SHANS (Spectrometer for Heavy Atoms and Nuclear Structure) and subsequently identified using the recoil-
-correlation method. In this paper, we report on new
-decay activities with
keV for
U and
keV for
U, which decay from the 8
isomeric states of
U into the 2
states of their daughter nuclei
Th, respectively. The new results extend the systematics of the
-decay fine structure for the
= 124 and 126 even-even isotones.
Walter, H.*; Colonna, M.*; Cozma, D.*; Danielewicz, P.*; Ko, C. M.*; Kumar, R.*; 小野 章*; Tsang, M. Y. B*; Xu, J.*; Zhang, Y.-X.*; et al.
Progress in Particle and Nuclear Physics, 125, p.103962_1 - 103962_90, 2022/07
被引用回数:88 パーセンタイル:95.20(Physics, Nuclear)原子核-原子核衝突や原子核の状態方程式の研究において、反応計算モデルは重要なツールとなり、世界中で開発が進んでいる。本論文は、原子力機構のJQMD-2.0を含め、現在開発中の複数のコード開発者の協力により、これらコードを同じ条件で比較することで共通点や差異を明らかにしたプロジェクトTransport Model Evaluation Project (TMEP)を総括したものである。参加したコードはBoltzmann-Uehling-Uhlenbeck(BUU)法に基づく13のコードと、Quantum Molecular Dynamics (QMD)法に基づく12のコードであった。プロジェクトでは、Au原子核同士を衝突させてその終状態を観測する現実的な計算や、一辺が640nmの箱に核子を詰めて時間発展させる仮想的な計算を行った。その結果、BUU法コードとQMD法コードは計算原理が異なるため、計算の設定に関係なく系統的な差異が生じることが明らかになった。その一方で、同じ方法を採用するコード間の比較では、時間発展を細かく計算することでコード間の差は埋まっていき、一定の収束値を持つことが示された。この結果は今後開発される同分野のコードのベンチマークデータとして有用なものであるだけでなく、原子核基礎物理学の実験や理論研究の標準的な指針としても役に立つことが期待される。
Zhang, W. Q.*; Andreyev, A. N.; Liu, Z.*; Seweryniak, D.*; Huang, H.*; Li, Z. H.*; Li, J. G.*; Guo, C. Y.*; 他34名*
Physics Letters B, 829, p.137129_1 - 137129_7, 2022/06
被引用回数:6 パーセンタイル:67.20(Astronomy & Astrophysics)Prompt and delayed -ray spectroscopy of the neutron-deficient, semi-magic isotope
Pb has been performed at the Argonne Gas-Filled Analyzer. A new 5.15(15)-
s isomeric state at only 308 keV above the spherical 3/2
ground state is identified and classified as a shape isomer. A strongly-coupled band is observed on top of the isomer, which is nearly identical to the one built on the prolate 7/2
[514] Nilsson state in the isotone
Hg. Based on this similarity and on the result of the potential-energy surface calculations, the new isomer in
Pb is proposed to originate from the same configuration. The retarded character of the 308-keV transition can be well explained by the significant difference between the prolate parent and spherical daughter configurations, leading to the shape isomerism. The combined results of the present work and the previous
-decay and laser spectroscopy studies present evidence for triple shape coexistence at low energy in the negative-parity configurations of
Pb, which is well reproduced by the potential-energy surface calculations.
新井 陽介*; 黒田 健太*; 野本 拓也*; Tin, Z. H.*; 櫻木 俊輔*; Bareille, C.*; 明比 俊太朗*; 黒川 輝風*; 木下 雄斗*; Zhang, W.-L.*; et al.
Nature Materials, 21(4), p.410 - 415, 2022/04
被引用回数:14 パーセンタイル:75.71(Chemistry, Physical)Low-energy electronic structures of CeSb which shows multiple phase transitions known as devil's staircase were examined by combination of laser angle-resolved photoemission, Raman and neutron scattering spectroscopies. A new type of electron-boson coupling between the mobile electrons and quadrupole CEF-excitations of the 4f orbitals was found. The coupling is exceedingly strong and exhibits anomalous step-like enhancement during the devil's staircase transition, unveiling a new type of quasiparticle, named multipole polaron.