検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 52 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Extraordinary hardening-by-annealing in bulk ultrafine grained magnesium with ultra-low yttrium addition

Zheng, R.*; Gong, W.; 他6名*

Acta Materialia, 293, p.121098_1 - 121098_12, 2025/07

Hall-Petch law fails when grains smaller than a critical size, due to grain boundary (GB) kinetics-dominated plasticity. To enhance strength, improving GB stability is a consideration. However, this often requires a significant amount of alloying elements, posing resource challenges. Additionally, practical fabrication of extremely fine grains is still an issue. In our study, we firstly demonstrate a remarkable hardening-by-annealing phenomenon in magnesium (Mg) with relatively large grain sizes of 0.2-0.5 $$mu$$m, even with ultra-low yttrium (Y) addition. We reveal that annealing induces GB segregation/relaxation, effectively limiting the GB kinetics and promoting dislocation-dominated plasticity. Furthermore, the accompanying dislocation annihilation hinders deformation due to dislocation scarcity. As a result, we discovered extraordinary hardening in bulk ultrafine grained Mg-Y ultra-dilute alloy. This work offers a promising avenue for developing energy- and resource-efficient sustainable Mg alloys with superior mechanical properties.

論文

Grain refinement of dual phase steel maximizes deformation ability of martensite, leading to simultaneous enhancement of strength and ductility

Park, M.-H.*; 柴田 曉伸*; Harjo, S.; 辻 伸泰*

Acta Materialia, 292, p.121061_1 - 121061_13, 2025/06

 被引用回数:1

Dual-phase (DP) steel, composed of soft ferrite and hard martensite, offers excellent strength-ductility balance and low cost. This study found that refining the DP microstructure enhanced both yield strength and strain hardening, improving strength and ductility. Digital image correlation (DIC) revealed strain localization in ferrite, but refinement reduced strain differences between ferrite and martensite, suppressing crack initiation. More ferrite/martensite interfaces promoted plasticity in martensite via enhanced deformation constraint. ${it In-situ}$ neutron diffraction showed martensite bore higher phase stress, which increased with refinement. By combining $$mu$$-DIC and neutron data, individual stress-strain curves for ferrite and martensite were constructed for the first time, explaining the strength-ductility synergy through interphase constraint. These findings offer guidance for designing heterostructured materials to overcome the strength-ductility trade-off.

論文

Role of solute hydrogen on mechanical property enhancement in Fe-24Cr-19Ni austenitic steel; An ${it in situ}$ neutron diffraction study

伊東 達矢; 小川 祐平*; Gong, W.; Mao, W.*; 川崎 卓郎; 岡田 和歩*; 柴田 曉伸*; Harjo, S.

Acta Materialia, 287, p.120767_1 - 120767_16, 2025/04

 被引用回数:0 パーセンタイル:0.00(Materials Science, Multidisciplinary)

Incorporating solute hydrogen into Fe-Cr-Ni-based austenitic stainless steels enhances both strength and ductility, providing a promising solution to hydrogen embrittlement by causing solid-solution strengthening and assisting deformation twinning. However, its impacts on the relevant lattice defects evolution (${it i.e.}$, dislocations, stacking faults, and twins) during deformation remains unclear. This study compared the tensile deformation behavior in an Fe-24Cr-19Ni (mass%) austenitic steel with 7600 atom ppm hydrogen-charged (H-charged) and without hydrogen-charged (non-charged) using ${it in situ}$ neutron diffraction. Hydrogen effects on the lattice expansion, solid-solution strengthening, stacking fault probability, stacking fault energy, dislocation density, and strain/stress for twin evolution were quantitatively evaluated to link them with the macroscale mechanical properties. The H-charged sample showed improvements in yield stress, flow stress, and uniform elongation, consistent with earlier findings. However, solute hydrogen exhibited minimal influences on the evolution of dislocation and stacking fault. This fact contradicts the previous reports on hydrogen-enhanced dislocation and stacking fault evolutions, the latter of which can be responsible for the enhancement of twinning. The strain for twin evolution was smaller in the H-charged sample compared to the non-charged one. Nevertheless, when evaluated as the onset stress for twin evolution, there was minimal change between the two samples. These findings suggest that the increase in flow stress due to the solid-solution strengthening by hydrogen is a root cause of accelerated deformation twinning at a smaller strain, leading to an enhanced work-hardening rate and improved uniform elongation.

論文

On the role of austenite stability in yielding behavior of a medium Mn steel with a duplex austenite-martensite microstructure

Wang, Y.*; Gong, W.; Harjo, S.; 他7名*

Acta Materialia, 288, p.120840_1 - 120840_14, 2025/04

 被引用回数:1 パーセンタイル:0.00(Materials Science, Multidisciplinary)

Low yield strength and the presence of Luders bands constitute principal impediments to the extensive applications of conventional medium Mn steels with a duplex microstructure of ferrite and austenite. Flash heating and the concept of chemical heterogeneity have been combined to engineer a duplex austenite-martensite microstructure in medium Mn steels, which has proven effective in augmenting the yield strength and mitigating the occurrence of Luders bands. However, the underlying mechanisms remain ambiguous. In the present work, the effect of austenite stability on yielding behavior was systematically investigated in an austenite-martensite duplex medium Mn steel. Austenite stability was identified as the critical factor governing yield strength, where reduced stability promotes early stage deformation induced martensite transformation, thereby decreasing yield strength. Diminished austenite stability may as well induce enhanced work hardening, thereby result in the inclination and eventual elimination of yield plateau, concomitant with the disappearance of Luders bands. These observations expand our current understanding of the yielding behavior in medium Mn steels and offer insights for the design of other advanced high strength steels.

論文

Characteristic deformation microstructure evolution and deformation mechanisms in face-centered cubic high/medium entropy alloys

吉田 周平*; Gong, W.; 他9名*

Acta Materialia, 283, p.120498_1 - 120498_15, 2025/01

 被引用回数:2 パーセンタイル:63.37(Materials Science, Multidisciplinary)

Face-centered cubic (FCC) high/medium entropy alloys (HEAs/MEAs), novel multi-principal element alloys, are known to exhibit exceptional mechanical properties at room temperature; however, the origin is still elusive. Here, we report the deformation microstructure evolutions in a tensile-deformed Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ representative MEA and Co$$_{60}$$Ni$$_{40}$$ alloy, a conventional binary alloy for comparison. These FCC alloys have high/low friction stresses, and share similar other material properties. The Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ MEA exhibited higher yield strength and work-hardening ability than in the Co$$_{60}$$Ni$$_{40}$$ alloy. Deformation microstructures in the Co$$_{20}$$Cr$$_{40}$$Ni$$_{40}$$ alloy were marked by the presence of coarse dislocation cells (DCs) regardless of grain orientation and a few deformation twins (DTs) in grains with the tensile axis (TA) near $$<$$1 1 1$$>$$. In contrast, the MEA developed three distinct deformation microstructures depending on grain orientations: fine DCs in grains with the TA near $$<$$1 0 0$$>$$, planar dislocation structure (PDS) in grains with other orientations, and a high density of DTs along with PDS in grains oriented $$<$$1 1 1$$>$$. These findings demonstrate that FCC HEAs/MEAs with high friction stresses naturally develop unique deformation microstructures which is beneficial for realizing superior mechanical properties compared to conventional materials.

論文

Effect of carbon segregation at prior austenite grain boundary on hydrogen-related crack propagation behavior in 3Mn-0.2C martensitic steels

岡田 和歩*; 柴田 曉伸*; 木村 勇次*; 山口 正剛; 海老原 健一; 辻 伸泰*

Acta Materialia, 280, p.120288_1 - 120288_14, 2024/11

 被引用回数:1 パーセンタイル:0.00(Materials Science, Multidisciplinary)

The present study aimed at strengthening prior austenite grain boundary (PAGB) cohesive energy using carbon segregation and investigated the effect of carbon segregation at PAGB on the microscopic crack propagation behavior of hydrogen-related intergranular fractures in high-strength martensitic steels. At the low hydrogen content (below 0.2 wt. ppm), the fracture initiation toughness ($$J_{rm IC}$$) and tearing modulus ($$T_{rm R}$$), corresponding to crack growth resistance, were significantly improved by carbon segregation. In contrast, $$J_{rm IC}$$ and $$T_{rm R}$$ did not change by carbon segregation at the high hydrogen content (above 0.5 wt. ppm). Considering the non-linear relationship between the toughness properties and the PAGB cohesive energy, the experimentally evaluated toughness properties ($$J_{rm IC}$$ and $$T_{rm R}$$) and the GB cohesive energy previously calculated by first-principles calculations were semi-quantitatively consistent even at the high hydrogen content. The microstructure observation confirmed that the plastic deformation associated with crack propagation, such as the local ductile fracture of uncracked ligaments and the formation of dislocation cell structures/nano-voids, played an important role in the non-linear relationship between the toughness properties and PAGB cohesive energy.

論文

Martensitic transformation-governed Luders deformation enables large ductility and late-stage strain hardening in ultrafine-grained austenitic stainless steel at low temperatures

Mao, W.*; Gao, S.*; Gong, W.; 川崎 卓郎; 伊東 達矢; Harjo, S.; 辻 伸泰*

Acta Materialia, 278, p.120233_1 - 120233_13, 2024/10

 被引用回数:12 パーセンタイル:87.44(Materials Science, Multidisciplinary)

Using a hybrid method of in situ neutron diffraction and digital image correlation, we found that ultrafine-grained 304 stainless steel exhibits Luders deformation after yielding, in which the deformation behavior changes from a cooperation mechanism involving dislocation slip and martensitic transformation to one primarily governed by martensitic transformation, as the temperature decreases from 295 K to 77 K. Such martensitic transformation-governed Luders deformation delays the activation of plastic deformation in both the austenite parent and martensite product, resulting in delayed strain hardening. This preserves the strain-hardening capability for the later stage of deformation, thereby maintaining a remarkable elongation of 29% while achieving a high tensile strength of 1.87 GPa at 77 K.

論文

Microscopic insights of the extraordinary work-hardening due to phase transformation

Ma, Y.*; Naeem, M.*; Zhu, L.*; He, H.*; Sun, X.*; Yang, Z.*; He, F.*; Harjo, S.; 川崎 卓郎; Wang, X.-L.*

Acta Materialia, 270, p.119822_1 - 119822_13, 2024/05

 被引用回数:9 パーセンタイル:95.42(Materials Science, Multidisciplinary)

We report an in situ neutron diffraction study of 316 L that reveals an extraordinary work-hardening rate (WHR) of $$sim$$7 GPa at 15 K. Detailed analyses show that the major contribution to the excellent strength and ductility comes from the transformation-induced plasticity (TRIP) effect, introduced by the austenite-to-martensite ($$gamma$$-to-$$alpha$$') phase transition. A dramatic increase in the WHR is observed along with the transformation; the WHR declined when the austenite phase is exhausted. During plastic deformation, the volume-fraction weighted phase stress and stress contribution from the $$alpha$$'-martensite increase significantly. The neutron diffraction data further suggest that the $$gamma$$-to-$$alpha$$' phase transformation was mediated by the $$varepsilon$$-martensite, as evidenced by the concurrent decline of the $$varepsilon$$ phase with the $$gamma$$ phase.

論文

Direct observations of dynamic and reverse transformation of Ti-6Al-4V alloy and pure titanium

Guo, B.*; Chen, H.*; Chong, Y.*; Mao, W.; Harjo, S.; Gong, W.; Zhang, Z.*; Jonas, J. J.*; 辻 伸泰*

Acta Materialia, 268, p.119780_1 - 119780_11, 2024/04

 被引用回数:9 パーセンタイル:92.77(Materials Science, Multidisciplinary)

This paper focused on the characterization and mechanism of the dynamic transformation from the alpha to beta phase during the hot deformation of Ti-6Al-4V alloy and pure titanium. The investigation employed in-situ neutron diffraction and atomistic simulations for a comprehensive understanding of the process. Dynamic transformations were observed during deformation of the Ti-6Al-4V alloy and pure titanium below the beta transus temperatures. During isothermal holding after unloading, the in-situ neutron diffraction results for Ti-6Al-4V and pure titanium indicated a sluggish reverse transformation from the beta to alpha phase. The mechanism of dynamic transformation was explored through in-situ neutron diffraction and atomistic simulations, which revealed twofold effects of deformation on dynamic transformation. Firstly, deformation led to a significant rise in the Gibbs energy of the alpha phase relative to the beta phase, expanding the beta phase region and diminishing the alpha phase region. Secondly, deformation lowered the energy barriers associated with dynamic transformation, facilitating the activation of dynamic transformation more readily than in the equilibrium state before deformation.

論文

Oxygen interstitials make metastable $$beta$$ titanium alloys strong and ductile

Chong, Y.*; Gholizadeh, R.*; Guo, B.*; 都留 智仁; Zhao, G.*; 吉田 周平*; 光原 昌寿*; Godfrey, A.*; 辻 伸泰*

Acta Materialia, 257, p.119165_1 - 119165_14, 2023/09

 被引用回数:38 パーセンタイル:98.36(Materials Science, Multidisciplinary)

$$beta$$チタン合金は、優れた歪み硬化能を有する反面、降伏強度が低いという問題を抱えている。ここでは、Ti-12Mo(wt.%)準安定$$beta$$チタン合金の降伏強度の向上における結晶粒の微細化と格子間物質の添加の寄与について検討した。その結果、結晶粒の微細化は材料を強化するどころか、この合金の極限引張強度を低下させることがわかった。この予想外の異常な挙動は、ひずみ誘起$$alpha^{primeprime}$$マルテンサイト相変態が著しく促進されたことに起因しており、その場観察放射光X線回折分析により、この相が$$beta$$相よりはるかに軟らかいことが初めて明らかになった。また、酸素添加と結晶粒微細化の組み合わせにより、Ti-12Mo-0.3O(wt.%)合金において前例のない強度と延性の相乗効果が得られることが判明した。この三元合金における酸素溶質には2つの有利な点がある。第一に、溶質酸素は、微細な組織においても、歪みによる$$alpha^{primeprime}$$マルテンサイト相への変態を大きく抑制し、過剰な$$alpha^{primeprime}$$マルテンサイトによる軟化効果を回避することができる。次に、アトムプローブトモグラフィーで明らかになったように、酸素溶質が双晶境界に偏析しやすい。これにより、$${332}langle113rangle$$変形双晶の成長が抑制され、より広範な双晶の核生成が促進される。本研究で得られた知見は、強靭な準安定$$beta$$チタン合金を設計するための費用対効果の高い根拠となり、この高強度対重量構造材料のさらなる普及に大きな意味を持つ。

論文

Quantitatively evaluating respective contribution of austenite and deformation-induced martensite to flow stress, plastic strain, and strain hardening rate in tensile deformed TRIP steel

Mao, W.; Gao, S.*; Gong, W.; Bai, Y.*; Harjo, S.; Park, M.-H.*; 柴田 曉伸*; 辻 伸泰*

Acta Materialia, 256, p.119139_1 - 119139_16, 2023/09

 被引用回数:33 パーセンタイル:97.68(Materials Science, Multidisciplinary)

変形誘起塑性(TRIP)鋼は、変形誘起マルテンサイト変態(DIMT)に伴う加工硬化率の向上により、強度と延性の優れた組み合わせを示す。TRIP鋼や合金の加工硬化挙動におけるDIMTの役割を定量的に評価することは、強度と延性の両立を可能にする先進材料を設計するための指針を与えるが、変形中に相組成が変化し続け、応力と塑性ひずみの両方が構成相間で動的に分配されるため、その評価は困難である。本研究では、Fe-24Ni-0.3C(wt.%)TRIPオーステナイト鋼の引張変形とその場中性子回折測定を行った。中性子回折測定による応力分割と相分割に基づく解析手法を提案し、試験片の引張流動応力と加工硬化率を、オーステナイト母相,変形誘起マルテンサイト、DIMT変態速度に関連する因子に分解し、試料の加工硬化挙動における各因子の役割を考察した。さらに、回折プロファイル解析により測定した転位密度を用いてオーステナイトとマルテンサイト間の塑性ひずみ分配を間接的に推定し、材料中のオーステナイトとマルテンサイト間の応力・ひずみ分配の全体像を構築した。その結果、変形誘起マルテンサイト変態速度とマルテンサイトが負担する相応力の両方が、材料の全体的な引張特性に重要な役割を果たしていることが示唆された。提案した分解解析法は、TRIP現象を示す多相合金の機械的挙動を調べるために広く適用できる可能性がある。

論文

Strengthening of $$alpha$$Mg and long-period stacking ordered phases in a Mg-Zn-Y alloy by hot-extrusion with low extrusion ratio

Harjo, S.; Gong, W.; 相澤 一也; 川崎 卓郎; 山崎 倫昭*

Acta Materialia, 255, p.119029_1 - 119029_12, 2023/08

 被引用回数:28 パーセンタイル:96.68(Materials Science, Multidisciplinary)

An as-cast sample and two hot-extruded samples with different extrusion ratios (R) of Mg$$_{97}$$Zn$$_{1}$$Y$$_{2}$$ alloy containing the HCP $$alpha$$ matrix ($$alpha$$Mg) and the long-period stacking ordered phase (LPSO) of about 25-vol%, were used in tensile deformation in situ neutron diffraction experiments, to elucidate the effects of uniquely different microstructural evolutions in $$alpha$$Mg and LPSO with varying the R value to the mechanical properties. $$alpha$$Mg behaved as the soft phase and LPSO as the hard phase, and hot-extrusion improved the strength of both. At the R value of 5.0, a bimodal microstructure was created in $$alpha$$Mg, increasing largely the yield strength of $$alpha$$Mg. With increasing the R value to 12.5, the bimodal microstructure of $$alpha$$Mg collapsed and the yield strength of $$alpha$$Mg decreased. However, the strength of LPSO increased monotonously with increasing the R value due to the developments of kink bands and texture.

論文

Lattice parameters of austenite and martensite during transformation for Fe-18Ni alloy investigated through ${it in situ}$ neutron diffraction

Gong, W.; Harjo, S.; 友田 陽*; 諸岡 聡; 川崎 卓郎; 柴田 曉伸*; 辻 伸泰*

Acta Materialia, 250, p.118860_1 - 118860_16, 2023/05

 被引用回数:17 パーセンタイル:90.95(Materials Science, Multidisciplinary)

Martensitic transformation is accompanied by the generation of microscale and macroscale internal stresses during cooling below the martensitic transformation start temperature. These internal stresses have been determined through X-ray or neutron diffraction, but the reported results are not consistent, probably because the measured lattice parameter is influenced not only by the internal stress but also by several factors, including solute elements and crystal defects. Therefore, ${it in situ}$ neutron diffraction combined with dilatometry measurements during martensitic transformation and subsequent cyclic tempering were performed for an Fe-18Ni alloy. The phase strains calculated by lattice parameter variations show that a hydrostatic compressive strain in austenite and a tensile strain in martensite arose as the martensitic transformation progressed during continuous cooling or isothermal holding. However, the phase stresses of austenite and martensite estimated from these strains failed to hold stress balance law when dense crystal defects involved in the processes. After these crystal defects were removed by appropriate tempering, the stress balance law held well. Meanwhile, the phase stresses of austenite and martensite were changed to opposite, revealing their true identity. Various crystal defects in austenite and martensite, introduced by plastic accommodation, were suggested to affect their lattice parameters and then their phase stresses.

論文

High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy

Kwon, H.*; Sathiyamoorthi, P.*; Gangaraju, M. K.*; Zargaran, A.*; Wang, J.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Lee, B.-J.*; Kim, H. S.*

Acta Materialia, 248, p.118810_1 - 118810_12, 2023/04

 被引用回数:48 パーセンタイル:99.21(Materials Science, Multidisciplinary)

Maraging steels, known for ultrahigh strength and good fracture toughness, derive their superior properties from lath martensite structure with high-density nanoprecipitates. In this work, we designed a novel Fe-based medium-entropy alloy with a chemical composition of Fe$$_{60}$$Co$$_{25}$$Ni$$_{10}$$Mo$$_5$$ in atomic% by utilizing the characteristics of the maraging steels. By a single-step aging of only 10 min at 650 $$^{circ}$$C, the alloy showed microstructures consisting of a very high number density of (Fe, Co, Ni)$$_7$$Mo$$_6$$-type nanoprecipitates in lath martensite structure and reverted FCC phase, which led to ultrahigh yield strength higher than 2 GPa. This work demonstrates a novel direction to produce strong and ductile materials by expanding the horizons of material design with the aid of high-entropy concept and overcoming the limits of conventional materials.

論文

Accurate description of hydrogen diffusivity in bcc metals using machine-learning moment tensor potentials and path-integral methods

Kwon, H.*; 志賀 基之; 君塚 肇*; 小田 卓司*

Acta Materialia, 247, p.118739_1 - 118739_11, 2023/04

 被引用回数:21 パーセンタイル:94.41(Materials Science, Multidisciplinary)

機械学習によるモーメントテンソルポテンシャルを用いた経路積分シミュレーションから、体心立方格子金属(Nb, Fe, W)中の希薄水素の拡散係数を密度汎関数理論レベルの精度で推定した。この計算結果は、精度が高いと考えられるいくつかの実験結果と大いに一致した。また、実験結果と矛盾なく同位体効果を再現した。

論文

Competitive strengthening between dislocation slip and twinning in cast-wrought and additively manufactured CrCoNi medium entropy alloys

Woo, W.*; Kim, Y. S.*; Chae, H. B.*; Lee, S. Y.*; Jeong, J. S.*; Lee, C. M.*; Won, J. W.*; Na, Y. S.*; 川崎 卓郎; Harjo, S.; et al.

Acta Materialia, 246, p.118699_1 - 118699_13, 2023/03

 被引用回数:47 パーセンタイル:99.25(Materials Science, Multidisciplinary)

In situ neutron diffraction experiments have been performed under loading in cast-wrought (CW) and additively manufactured (AM) equiatomic CoCrNi medium-entropy alloys. The diffraction line profile analysis correlated the faulting-embedded crystal structure to the dislocation density, stacking/twin fault probability, and stacking fault energy as a function of strain. The results showed the initial dislocation density of 1.8$$times$$10$$^{13}$$ m$$^{-2}$$ in CW and 1.3$$times$$10$$^{14}$$ m$$^{-2}$$ in AM. It significantly increased up to 1.3$$times$$10$$^{15}$$ m-$$^{-2}$$ in CW and 1.7$$times$$10$$^{15}$$ m$$^{-2}$$ in AM near fracture. The dislocation density contributed to the flow stress of 470 MPa in CW and 600 MPa in AM, respectively. Meanwhile, the twin fault probability of CW (2.7%) was about two times higher than AM (1.3%) and the stacking fault probability showed the similar tendency. The twinning provided strengthening of 360 MPa in CW and 180 MPa in AM. Such a favorable strengthening via deformation twinning in CW and dislocation slip in AM was attributed to the stacking fault energy. It was estimated as 18.6 mJ/m$$^{2}$$ in CW and 37.5 mJ/m$$^{2}$$ in AM by the strain field of dislocations incorporated model. Dense dislocations, deformation twinning, and atomic-scale stacking structure were examined by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM).

論文

Tensile overload-induced texture effects on the fatigue resistance of a CoCrFeMnNi high-entropy alloy

Lam, T.-N.*; Chin, H.-H.*; Zhang, X.*; Feng, R.*; Wang, H.*; Chiang, C.-Y.*; Lee, S. Y.*; 川崎 卓郎; Harjo, S.; Liaw, P. K.*; et al.

Acta Materialia, 245, p.118585_1 - 118585_9, 2023/02

 被引用回数:24 パーセンタイル:88.92(Materials Science, Multidisciplinary)

The present study investigates the crystallographic-texture effects on the improved fatigue resistance in the CoCrFeMnNi high-entropy alloys (HEAs) with the full-size geometry of the ASTM Standards E647-99. We exploited X-ray nano-diffraction mapping to characterize the crystal-deformation levels ahead of the crack tip after stress unloading under both constant- and tensile overloaded-fatigue conditions. The crack-tip blunting-induced much higher deformation level was concentrated surrounding the crack-tip which delays the fatigue-crack growth immediately after a tensile overload. The predominant deformation texture orientation in the Paris regime was investigated, using electron backscatter diffraction and orientation distribution function analyses. The twinning formation-driven shear deformation gave rise to the development of the Goss-type texture within the plastic deformation regime under a tensile-overloaded-fatigue condition, which was attributed to enhance the crack deflection and thus the tensile induced crack-growth-retardation period in the CoCrFeMnNi HEA.

論文

Unexpected dynamic transformation from $$alpha$$ phase to $$beta$$ phase in zirconium alloy revealed by in-situ neutron diffraction during high temperature deformation

Guo, B.*; Mao, W.; Chong, Y.*; 柴田 曉伸*; Harjo, S.; Gong, W.; Chen, H.*; Jonas, J. J.*; 辻 伸泰*

Acta Materialia, 242, p.118427_1 - 118427_11, 2023/01

 被引用回数:12 パーセンタイル:70.10(Materials Science, Multidisciplinary)

Dynamic transformation from alpha (HCP) to beta (BCC) phase in a zirconium alloy was revealed by the use of in-situ neutron diffraction during hot compression. The dynamic transformation was unexpectedly detected during isothermal compression at temperatures of 900$$^{circ}$$C and 950$$^{circ}$$C (alpha + beta two-phase region) and strain rates of 0.01 s$$^{-1}$$ and 0.001 s$$^{-1}$$, even though equilibrium two-phase states were achieved prior to the hot compression. Dynamic transformation was accompanied by diffusion of Sn from beta to alpha phase, which resulted in changes of lattice parameters and a characteristic microstructure of alpha grains. The details of dynamic transformation are discussed using the evolution of lattice constants.

論文

Evidence supporting reversible martensitic transformation under cyclic loading on Fe-Mn-Si-Al alloys using ${it in situ}$ neutron diffraction

澤口 孝宏*; 友田 陽*; 吉中 奎貴*; Harjo, S.

Acta Materialia, 242, p.118494_1 - 118494_14, 2023/01

 被引用回数:18 パーセンタイル:77.67(Materials Science, Multidisciplinary)

Fe-Mn-Si-based alloys, show superior resistance to plastic fatigue compared to the conventional steels, which is ascribed to the reversible back-and-forth movement of Shockley partial dislocations associated with a reversible martensitic transformation between the face-centered cubic $$gamma$$-austenite and hexagonal close-packed $$epsilon$$-martensite. The purpose of this study was to gather evidence of the reversible martensitic transformation using in situ neutron diffraction under cyclic loading. Three Fe-30Mn-Si-Al alloys with different Gibbs free energy differences at 298 K were studied to unravel the effect of phase stability on the degree of reversibility.

論文

Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen

Chong, Y.*; 都留 智仁; Guo, B.*; Gholizadeh, R.*; 井上 耕治*; 辻 伸泰*

Acta Materialia, 240, p.118356_1 - 118356_15, 2022/11

 被引用回数:34 パーセンタイル:94.82(Materials Science, Multidisciplinary)

本研究では、室温でのチタンの引張特性と変形挙動に及ぼす窒素含有量と結晶粒径の影響を体系的に調査した。巨大ひずみ加工と焼鈍により、超高降伏強度(1.04GPa)と大きな均一伸び(10%)の前例のない相乗効果を組み合わせた、完全再結晶微細構造を備えた超微細粒(UFG)Ti-0.3wt.%N合金が得られた。Ti-0.3wt.%N合金の硬化およびひずみ硬化メカニズムは、変形下部構造の観察と第一原理計算によって包括的に研究された。UFG Ti-0.3wt.%Nの優れた強度/延性バランスへの窒素の寄与は2倍であることが明らかになった。粒子内の窒素原子は、八面体から六面体のサイトへの窒素のシャッフルにより、角柱面上の$$<a>$$転位の運動を強く妨げ、純Tiの6倍の摩擦応力の増加を引き起こした。さらに、Ti-0.3wt.%N合金の柱面と錐面の間の積層欠陥エネルギー差が大幅に減少することで、$$<c+a>$$転位の活性化が容易になり、ひずみ硬化率の向上に寄与した。我々の実験的および理論的計算研究は、延性を大幅に犠牲にすることなく手頃な価格の高強度チタンの設計に関する知見を与える。

52 件中 1件目~20件目を表示