Competitive strengthening between dislocation slip and twinning in cast-wrought and additively manufactured CrCoNi medium entropy alloys
Woo, W.*; Kim, Y. S.*; Chae, H. B.*; Lee, S. Y.*; Jeong, J. S.*; Lee, C. M.*; Won, J. W.*; Na, Y. S.*; 川崎 卓郎 ; Harjo, S. ; An, K.*
Woo, W.*; Kim, Y. S.*; Chae, H. B.*; Lee, S. Y.*; Jeong, J. S.*; Lee, C. M.*; Won, J. W.*; Na, Y. S.*; Kawasaki, Takuro; Harjo, S.; An, K.*
In situ neutron diffraction experiments have been performed under loading in cast-wrought (CW) and additively manufactured (AM) equiatomic CoCrNi medium-entropy alloys. The diffraction line profile analysis correlated the faulting-embedded crystal structure to the dislocation density, stacking/twin fault probability, and stacking fault energy as a function of strain. The results showed the initial dislocation density of 1.810 m in CW and 1.310 m in AM. It significantly increased up to 1.310 m- in CW and 1.710 m in AM near fracture. The dislocation density contributed to the flow stress of 470 MPa in CW and 600 MPa in AM, respectively. Meanwhile, the twin fault probability of CW (2.7%) was about two times higher than AM (1.3%) and the stacking fault probability showed the similar tendency. The twinning provided strengthening of 360 MPa in CW and 180 MPa in AM. Such a favorable strengthening via deformation twinning in CW and dislocation slip in AM was attributed to the stacking fault energy. It was estimated as 18.6 mJ/m in CW and 37.5 mJ/m in AM by the strain field of dislocations incorporated model. Dense dislocations, deformation twinning, and atomic-scale stacking structure were examined by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM).