Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 260

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study; Project for fiscal year 2019

Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2020-008, 41 Pages, 2020/08

JAEA-Data-Code-2020-008.pdf:3.14MB
JAEA-Data-Code-2020-008-appendix(CD-ROM).zip:93.51MB

Japan Atomic Energy Agency (JAEA) has been conducting a wide range of geoscientific research in order to build scientific and technological basis for geological disposal of nuclear wastes. This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to FY2004. Since FY2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. Furthermore, these monitoring were ceased at the end of FY2019 due to the completion of the RHS project. This report describes the results of the long term hydro-pressure monitoring for FY2019.

Journal Articles

Method for groundwater monitoring on the disposal of radioactive waste

Murakami, Hiroaki; Iwatsuki, Teruki; Takeuchi, Ryuji; Nishiyama, Nariaki*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 27(1), p.22 - 33, 2020/06

Geological disposal of radioactive waste requires the large amounts of fundamental technical knowledge throughout the project. Monitoring is carried out to collect site-relevant information for the creation of an environmental database, to assist in the decision-making process, etc. We summarized the current technical level and problems of the groundwater monitoring in the world. Through the research and technology development so far, the technologies have been developed for drilling borehole in the geological environment survey prior to monitoring and the selection of the monitoring site. However, the following technical developments are remaining issues: long-term operation method of monitoring equipment, retrieving method of monitoring equipment after long-term operation, transport method of backfill material for borehole sealing, technical basis for the sealing performance when the borehole-protective casing and strainer tube are left.

Journal Articles

Evaluation of oxidation efficiency of hydrophobic palladium catalyst for $$^{3}$$H monitoring in radioactive gaseous waste

Furutani, Misa; Kometani, Tatsunari; Nakagawa, Masahiro; Ueno, Yumi; Sato, Junya; Iwai, Yasunori*

Hoken Butsuri (Internet), 55(2), p.97 - 101, 2020/06

Herein, an oxidation catalyst was introduced after heating it to 600$$^{circ}$$C to oxidize tritium gas (HT) existing in exhaust into tritiated water vapor (HTO). This study aims to establish a safer $$^{3}$$H monitoring system by lowering the heating temperature required for the catalyst. In these experiments, which were conducted in the Nuclear Science Research Institute, Japan Atomic Energy Agency, cupric oxide, hydrophobic palladium/silicon dioxide (Pd/SiO$$_{2}$$), and platinum/aluminum oxide (Pt/Al$$_{2}$$O$$_{3}$$) catalysts were ventilated using standard hydrogen gas. After comparing the oxidation efficiency of each catalyst at different temperatures, we found that the hydrophobic Pd/SiO$$_{2}$$ and Pt/Al$$_{2}$$O$$_{3}$$ catalysts could oxidize HT into HTO at 25$$^{circ}$$C.

JAEA Reports

Study of groundwater sampling casing for monitoring device

Okihara, Mistunobu*; Yahagi, Ryoji*; Iwatsuki, Teruki; Takeuchi, Ryuji; Murakami, Hiroaki

JAEA-Technology 2019-021, 77 Pages, 2020/03

JAEA-Technology-2019-021.pdf:5.33MB

One of the major subjects of the ongoing geoscientific research program, the Mizunami Underground Research Laboratory (MIU) Project in the Tono area, central Japan, is accumulation of knowledge on monitoring techniques of the geological environment. In this report, the conceptual design of the monitoring system for groundwater pressure and water chemistry was carried out. The currently installed and used system in research galleries at various depths was re-designed to make it possible to collect groundwater and observe the water pressure on the ground.

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study Project for fiscal year 2018

Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2019-010, 41 Pages, 2019/12

JAEA-Data-Code-2019-010.pdf:3.9MB
JAEA-Data-Code-2019-010-appendix(CD-ROM).zip:122.73MB

Japan Atomic Energy Agency (JAEA) has been conducting a wide range of geoscientific research in order to build scientific and technological basis for geological disposal of nuclear wastes. This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to FY 2004. Since FY 2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. This report describes the results of the long term hydro-pressure monitoring from April 2018 to March 2019.

JAEA Reports

Background radiation monitoring using manned helicopter for application of technique of nuclear emergency response in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2019-017, 95 Pages, 2019/11

JAEA-Technology-2019-017.pdf:12.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background radiation monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in the aerial monitoring around FDNPS against nuclear emergency response. The results of monitoring around Shimane and Hamaoka Nuclear Power Stations in the fiscal 2018 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the nuclear power station in the fiscal year 2018 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Komiya, Tomokazu; Iwai, Takeyuki*; Seguchi, Eisaku*; Matsunaga, Yuki*; Kawabata, Tomoki*; Haginoya, Masashi*; Hiraga, Shogo*; et al.

JAEA-Technology 2019-016, 116 Pages, 2019/11

JAEA-Technology-2019-016.pdf:14.09MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the FDNPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter has been conducted around FDNPS. The results in the fiscal 2018 were summarized in this report. Discrimination method of gamma rays from Rn-progenies was also utilized to evaluate their effect on aerial radiation monitoring. In addition, analysis taken topographical effects into consideration was applied to previous results of airborne monitoring to improve the precision of conventional method.

Journal Articles

Student and Young researcher's view of research on health physics and environment science

Miwa, Kazuji; Terasaka, Yuta; Ochi, Kotaro; Futemma, Akira; Sasaki, Miyuki; Hirouchi, Jun

Nippon Genshiryoku Gakkai-Shi, 61(9), p.687 - 691, 2019/09

This report summarizes the contents of the session of the Health Physics and Environment Science Division, which was held in Atomic Energy Society of Japan 2019 Spring Meeting. In this session, six students and young researchers who engaged in the field of nuclear energy and radiation gave a lecture about health physics and environmental science research through their expertise. After the all presentations end, we took discussion time about the issues and future development in this field with all attendees. In this report, we summarized each lecture outline and discussion contents.

Journal Articles

Influence of artificial radionuclide deposited on a monitoring post on measured value of ambient dose rate

Hiraoka, Hirokazu; Hokama, Tomonori; Munakata, Masahiro

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Neighboring inhabitants of nuclear facilities must evacuate according to an ambient dose rate at a nuclear accident. The evacuation is judged by the measured value by monitoring posts (MPs). However, if the measured value increase by artificial radionuclide deposited to MP, it is considered that the dose rate of the surrounding environment is overestimated. The purpose of this research is to evaluate exactly the dose rate even if the radionuclide deposit to the MP, in order to adequately evacuate inhabitants. Just a MP and horizontal ground was simulated. To calculate ambient dose rates from the roof surface of MP and ground surface, Monte Carlo calculation was done. And, it was obtained that the ratio which the dose rate from the roof account for sum of two these dose rates. According to the result, the ratio was 42%. It suggested that the radionuclide could increase the measured value. However, because simulated system was simple, it is considered that the ratio was overestimated.

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study Project for fiscal year 2017

Keya, Hiromichi; Onoe, Hironori; Takeuchi, Ryuji

JAEA-Data/Code 2019-001, 49 Pages, 2019/03

JAEA-Data-Code-2019-001.pdf:6.06MB
JAEA-Data-Code-2019-001-appendix(CD-ROM).zip:178.77MB

A wide range of geoscientific research aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to March 2004. Since 2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. This report describes the results of the long term hydro-pressure monitoring from April 2017 to March 2018.

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study Project for fiscal year 2015-2016

Keya, Hiromichi; Takeuchi, Ryuji; Iwatsuki, Teruki

JAEA-Data/Code 2018-020, 58 Pages, 2019/03

JAEA-Data-Code-2018-020.pdf:3.19MB
JAEA-Data-Code-2018-020-appendix1(CD-ROM).zip:203.36MB
JAEA-Data-Code-2018-020-appendix2(CD-ROM).zip:168.01MB

A wide range of geoscientific research aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to March 2004. Since 2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. This report describes the results of the long term hydro-pressure monitoring from April 2015 to March 2017.

JAEA Reports

Data of long term hydro-pressure monitoring on Mizunami Underground Research Laboratory Project for fiscal year 2015-2016

Keya, Hiromichi; Takeuchi, Ryuji; Iwatsuki, Teruki

JAEA-Data/Code 2018-019, 107 Pages, 2019/03

JAEA-Data-Code-2018-019.pdf:11.01MB
JAEA-Data-Code-2018-019-appendix1(DVD-ROM).zip:419.48MB
JAEA-Data-Code-2018-019-appendix2(DVD-ROM).zip:374.0MB
JAEA-Data-Code-2018-019-appendix3(DVD-ROM).zip:312.2MB

The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), the project is being carried out under the Phase III. The main goals of the MIU Project from Phase I to Phase III are: to establish techniques for investigation, analysis and assessment of the deep geological environment, and to develop a base of engineering for deep underground application. One of the Phase III goals is to construct geological environment models and grasp deep geological changes when expanding the research gallery by research and investigations using research galleries. The long term hydro-pressure monitoring has been continued to achieve the Phase III goals. This report describes the results of the long term hydro-pressure monitoring from April 2015 to March 2017.

Journal Articles

Evaluation of a surface collection efficiency and a stability of flow rate for the commercially available filters used for ambient radioactive aerosols

Tamakuma, Yuki*; Yamada, Ryohei; Iwaoka, Kazuki*; Hosoda, Masahiro*; Tokonami, Shinji*

Hoken Butsuri (Internet), 54(1), p.5 - 12, 2019/03

Airborne radioactivity measurements are necessary to know the contamination level and internal doses for residents after a nuclear accident. In addition, measurements of radon progenies in air, which are the risk factor of lung cancer, are also important to evaluate lung dose. In these measurements, a filter sampling is used to collect radioactive aerosols. However, it is well known that results of the measurement using a filter are strongly dependent on characteristics of the used filter. Selection of a suitable filter is important to achieve the high-resolution and long-term measurement. "Surface collection efficiency (SCE)" and "stability of air flow rate" were examined for six types of filter that are commercially available in Japan. In Japan, cellulose-glass fiber filter paper (HE-40T) is used for an environmental monitoring in Japan. In this study, it was found that the SCE of HE-40T was lower than that of mixed cellulose ester type membrane filter by Merck Millipore (DAWP02500). Attenuation ratio of flow rate for DAWP02500 was evaluated to be 2.9% which was lowest in six filters. The results suggest that the DAWP02500 is the most suitable for collecting radioactive aerosols for a long term.

Journal Articles

Development of radiation resistant monitoring system in light water reactor

Takeuchi, Tomoaki; Otsuka, Noriaki; Nakano, Hiroko; Iida, Tatsuya*; Ozawa, Osamu*; Shibagaki, Taro*; Komanome, Hirohisa*; Tsuchiya, Kunihiko

QST-M-16; QST Takasaki Annual Report 2017, P. 67, 2019/03

no abstracts in English

JAEA Reports

Background radiation monitoring using manned helicopter for establishment of technique of nuclear emergency response in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; Sato, Kazuhiko*; et al.

JAEA-Technology 2018-016, 98 Pages, 2019/02

JAEA-Technology-2018-016.pdf:18.64MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. We have carried out the background monitoring around the nuclear power stations of the whole country to apply the airborne radiation monitoring technique that has been cultivated in Fukushima against nuclear emergency response. The results of monitoring around Tomari, Kashiwazaki-Kariwa and Genkai Nuclear Power Station in the fiscal 2017 were summarized in this report. In addition, technical issues were described.

JAEA Reports

Radiation monitoring using manned helicopter around the nuclear power station in the fiscal year 2017 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Ishizaki, Azusa; Iwai, Takeyuki*; Seguchi, Eisaku; Matsunaga, Yuki*; Kawabata, Tomoki; Toyoda, Masayuki*; Tobita, Shinichiro*; Hiraga, Shogo*; et al.

JAEA-Technology 2018-015, 120 Pages, 2019/02

JAEA-Technology-2018-015.pdf:15.01MB

By the nuclear disaster of Fukushima Daiichi Nuclear Power Station (FDNPS), Tokyo Electric Power Company (TEPCO), caused by the Great East Japan Earthquake and the following tsunami on March 11, 2011, a large amount of radioactive material was released from the NPS. After the nuclear disaster, airborne radiation monitoring using manned helicopter was conducted around FDNPS. The results in the fiscal 2017 were summarized in this report. In addition, we developed and systemized the discrimination technique of the Rn-progenies. The accuracy of aerial radiation monitoring was evaluated by taking into consideration GPS data error.

Journal Articles

Estimation on the change of the condition of the impervious plug during groundwater recovery experiment

Matsui, Hiroya; Mikake, Shinichiro; Ikeda, Koki; Tsutsue, Jiyun

Dai-46-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.286 - 291, 2019/01

Japan Nuclear Energy Agency (JAEA) has been conducting the groundwater recovery experiment to develop a methodology to estimate the geological environment recovery after closure of the drift at GL-500m in Mizunami Underground Research Laboratory, Japan. For the experiment, an impervious concrete plug was constructed to maintain a recovered water pressure and its functions were assessed based on the monitoring results and interpretation of several kinds of measurements performed inside and outside of the plug during groundwater recovery test. This report summarized the change of the condition of the plug due to groundwater recovery estimated based on the different kinds of monitoring data.

JAEA Reports

Data of long term hydro-pressure monitoring on Mizunami Underground Research Laboratory Project for fiscal year 2013-2014

Keya, Hiromichi; Beppu, Shinji*; Takeuchi, Ryuji

JAEA-Data/Code 2018-011, 112 Pages, 2018/10

JAEA-Data-Code-2018-011.pdf:10.11MB
JAEA-Data-Code-2018-011-appendix1(DVD-ROM).zip:388.14MB
JAEA-Data-Code-2018-011-appendix2(DVD-ROM).zip:467.11MB
JAEA-Data-Code-2018-011-appendix3(DVD-ROM).zip:325.24MB

Mizunami Underground Research Laboratory (MIU) Project has three overlapping phases: Surface-based investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III), with a total duration of 20 years. Currently, the project is being carried out under the Phase II and the Phase III. One of the Phase II goals of Project is set to develop and revise models of the geological environment using the investigation results obtained during excavation, and determine and assess the changes in the geological environment in response to excavation. The long term hydro-pressure monitoring has been continued to achieve the Phase II goals. This paper describes the results of the long term hydro-pressure monitoring from April 2013 to March 2015.

JAEA Reports

Data of long term hydro-pressure monitoring on Tono Regional Hydrogeological Study Project for fiscal year 2013$$sim$$2014

Beppu, Shinji*; Keya, Hiromichi; Takeuchi, Ryuji

JAEA-Data/Code 2018-010, 58 Pages, 2018/10

JAEA-Data-Code-2018-010.pdf:7.0MB
JAEA-Data-Code-2018-010-appendix(DVD-ROM).zip:285.7MB

This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The Regional Hydrogeological Study (RHS) Project is a one of the geoscientific research program at Tono Geoscience Center. This project started since April 1992 and main investigations were finished to March 2004. Since 2005, hydrogeological and hydrochemical monitoring have been continued using the existing monitoring system. This report describes the results of the long term hydro-pressure monitoring from April 2013 to March 2015.

Journal Articles

Estimation of radionuclide deposition process by cloud and fog water at mountainous area; Comparison of observed data of airborne radiation monitoring and reproduction calculation

Sanada, Yukihisa; Katata, Genki*; Kaneyasu, Naoki*

Isotope News, (759), p.18 - 21, 2018/10

no abstracts in English

260 (Records 1-20 displayed on this page)