Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1746

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Countermeasure against Beyond Design Basis Accident of HTTR by using fire engine

Shimazaki, Yosuke; Jidaisho, Tatsuya; Ishii, Toshiaki; Inoi, Hiroyuki; Iigaki, Kazuhiko

JAEA-Technology 2024-005, 23 Pages, 2024/06

JAEA-Technology-2024-005.pdf:5.53MB

HTTR has newly assumed Beyond Design Basis Accident (BDBA) as part of conformity assessment with the new regulatory standards and has established measures to prevent the spread of BDBA. Among these measures, to prevent the spread of BDBA caused by cooling water leaks from spent fuel storage pool, the Oarai Research Institute's fire engine was selected as an equipment to prevent the spread of BDBA, and required performances such as pumping water performance were determined. After all required performances were confirmed by inspections, the fire engine passed the operator's pre-use inspection and contributed to the restart of the HTTR operations.

Journal Articles

Assessment of advection dispersion through excavation damaged zone in sedimentary rock by in situ tracer tests

Takeda, Masaki; Ishii, Eiichi

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 31(1), p.3 - 10, 2024/06

Uunderstanding nuclide transport characteristics in the EDZ of disposal and access tunnels is an essential issue in the safety assessment of geological disposal of high-level radioactive waste. Although tracer tests are effective in evaluating the transport of nuclides in rock masses, the transport properties of EDZ in sedimentary rock, to our best knowledge, have not been investigated by in situ tracer tests. The authors conducted cross-hole tracer tests on EDZ fractures at the Horonobe Underground Research Laboratory to evaluate their longitudinal dispersibility. One-dimensional advection-dispersion analyses based on the tracer test data were performed, and the longitudinal dispersibility was estimated to be 0.12 m for the test scale of 4.2 m. This longitudinal dispersibility is 1/100 to 1/10 of the test scale, comparable with the empirical relationship between the test scale and longitudinal dispersibility for natural fractures and rock matrices. The series of tracer tests and analyses reported in this paper demonstrate that advection-dispersion occurs also in EDZ fractures similarly to natural fractures and rock matrices, and that longitudinal dispersibility in EDZ fractures can be assessed also by conventional in situ tracer test methods.

Journal Articles

High Temperature Gas-cooled Reactor (HTGR)

Noguchi, Hiroki; Sato, Hiroyuki; Nishihara, Tetsuo; Sakaba, Nariaki

Kagaku Kogaku, 88(5), p.211 - 214, 2024/05

High temperature gas-cooled reactor (HTGR), one of the next-generation innovative reactors, has an inherent safety and can generate very high-temperature heat which can be used for various heat application including hydrogen production. In Japan, Green Growth Strategy for Carbon Neutrality in 2050 and Basic Policy for the Realization of GX state the promotion of technology development necessary for mass and low-cost carbon-free hydrogen production and development and construction of next-generation innovative reactors including the HTGR for the decarbonization of industrial sectors. Based on these policies, JAEA has been conducted the world's first hydrogen production test using nuclear heat from an HTGR, in addition to verifying the excellent safety features of HTGR, and has also started to study the construction of an HTGR demonstration reactor in cooperation with the industrial community. This paper shows the current status of R&D of HTGR in Japan.

JAEA Reports

FBR metallic materials test manual (2023 revised edition)

Imagawa, Yuya; Toyota, Kodai; Onizawa, Takashi; Kato, Shoichi

JAEA-Testing 2023-004, 76 Pages, 2024/03

JAEA-Testing-2023-004.pdf:2.08MB

This manual describes the methods for conducting material tests in air, argon gas, and sodium, and for organizing the data obtained, as a part of the development of high-temperature structural design technology for fast reactors. This manual reflects the revision of test methods in Japanese Industrial Standards (JIS) to the "FBR Metallic Materials Test Manual, PNC TN241 77-03" published in 1977 and the "FBR Metallic Materials Test Manual (Revised Edition), JNC TN9520 2001-001" published in 2001. Also, it was written with reference to the recommended room temperature / elevated temperature tensile test method by the Japan Society of Mechanical Engineers (JSME) and the test standard for the elevated-temperature low-cycle fatigue test method by the Society of Materials Science, Japan (JSMS), which are the standard for material test methods in the domestic academic society.

JAEA Reports

Conceptual study of Post Irradiation Examination (PIE) Facility at J-PARC

Saito, Shigeru; Meigo, Shinichiro; Makimura, Shunsuke*; Hirano, Yukinori*; Tsutsumi, Kazuyoshi*; Maekawa, Fujio

JAEA-Technology 2023-025, 48 Pages, 2024/03

JAEA-Technology-2023-025.pdf:3.11MB

JAEA has been developing Accelerator-Driven Systems (ADS) for research and development of nuclear transmutation using accelerators in order to reduce the volume and hazardousness of high-level radioactive waste generated by nuclear power plants. In order to prepare the material irradiation database necessary for the design of ADS and to study the irradiation effects in Lead-Bismuth Eutectic (LBE) alloys, a proton irradiation facility is under consideration at J-PARC. In this proton irradiation facility, 250 kW proton beams will be injected into the LBE spallation target, and irradiation tests under LBE flow will be performed for candidate structural materials for ADS. Furthermore, semiconductor soft-error tests, medical RI production, and proton beam applications will be performed. Among these, Post Irradiation Examination (PIE) of irradiated samples and RI separation and purification will be carried out in the PIE facility to be constructed near the proton irradiation facility. In this PIE facility, PIE of the equipment and samples irradiated in other facilities in J-PARC will also be performed. This report describes the conceptual study of the PIE facility, including the items to be tested, the test flow, the facilities, the test equipment, etc., and the proposed layout of the facility.

JAEA Reports

Training using JMTR and related facilities in FY2021 and FY2022

Nakano, Hiroko; Fujinami, Kyoko; Yamaura, Takayuki; Kawakami, Jun; Hanakawa, Hiroki

JAEA-Review 2023-036, 33 Pages, 2024/03

JAEA-Review-2023-036.pdf:2.47MB

A practical training course using the JMTR (Japan Materials Testing Reactor) and other research infrastructures was held from November 29 to December 2 in 2021 for Asian young researchers and engineers. This course was adopted as International Youth Exchange Program in Science (SAKURA SCIENCE Exchange Program) which is the project of the Japan Science and Technology Agency, and this course aims to enlarge the number of high-level nuclear researchers/engineers in Asian countries which are planning to introduce a nuclear power plant, and to promote the use of facilities in future. In this year, from the viewpoint of preventing the spread of COVID-19 infection, it was decided to hold the event online. 53 young researchers and engineers joined the course from 6 countries. In FY2022, training programs with invitations were held due to the easing of restrictions on entry into Japan from overseas. 7 young researchers and engineers from4 Asian countries participated in the training from February 1 to 10, 2023. The common curriculum in the training course of FY2021 and FY2022 included lectures on nuclear energy, irradiation testing, safety management, JMTR decommissioning plan, etc. In the online session, conducted in FY2021, information exchange on the energy situation in each country was conducted. On-site training conducted in FY2022, included practical training on operation using simulations, environmental monitoring, etc. and facility tours of the JMTR, etc. Many participants could join the online training course, they created a diversity of expertise and made lively discussions during the information exchange. On-site training, while limited in number of participants, provided a good opportunity for personnel exchange through practical training and face-face communication. It is desirable to hold on-site training as long as circumstances permit. This report summarizes the training conducted in FY2021 and FY2022.

JAEA Reports

Technical note for the cavitation damage inspection for interior surface of the mercury target vessel, 2; Damage depth measurement for cavitation erosion

Naoe, Takashi; Wakui, Takashi; Kinoshita, Hidetaka; Kogawa, Hiroyuki; Teshigawara, Makoto; Haga, Katsuhiro

JAEA-Technology 2023-022, 81 Pages, 2024/01

JAEA-Technology-2023-022.pdf:9.87MB

In the liquid mercury target system for the pulsed spallation neutron source of Materials and Life Science Experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC), pressure waves that is generated by the high-energy proton beam injection simultaneously with the spallation reaction, resulting severe cavitation erosion damage on the interior surface of the mercury target vessel. Because the bubble of pressure wave-induced cavitation collapsing near the interior surface of the mercury target vessel with applying the large amplitude of localized impact on the surface. Since the wall thickness of the beam entrance portion of the target vessel is designed to be 3 mm to reduce thermal stress due to the internal heating, the erosion damage has the possibility to cause the vessel fatigue failure and mercury leakage originated from erosion pits during operation. To reduce the erosion damage by cavitation, a technique of gas microbubble injection into the mercury for pressure wave mitigation, and double-walled structure of the beam window of the target vessel has been applied. A specimen was cut from the beam window of the used mercury target vessel in order to investigate the effect of the damage mitigation technologies on the vessel, and to reflect the consideration of operation condition for the next target. We have observed cavitation damage on interior surface of the used mercury target vessel by cutting out the disk shape specimens. Damage morphology and depth of damaged surface were evaluated and correlation between the damage depth and operational condition was examined. The result showed that the erosion damage by cavitation is extremely reduced by injecting gas microbubbles and the damage not formed inside narrow channel of the double-walled structure for relatively high-power operated target vessels.

JAEA Reports

Technology information on High Temperature Gas-cooled Reactor (HTGR)

HTGR Design Group, HTGR Project Management Office

JAEA-Technology 2023-019, 39 Pages, 2024/01

JAEA-Technology-2023-019.pdf:1.34MB

In order to realize the development of the demonstration reactor of High Temperature Gas-cooled Reactor (HTGR) with a target of starting operation in the 2030s, as indicated in the "Basic Policy for GX Realization" (Cabinet Decision on February 10, 2023) and the Working Group on Innovative Reactors of METI, Japan Atomic Energy Agency (JAEA) has been working on the development of a standard for the development of a HTGR under the Atomic Energy Society of Japan and the Japan Society of Mechanical Engineers. In addition, JAEA has been commissioned by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry (METI) to conduct the "Demonstration Project for Mass Hydrogen Production Technology Using Ultra-High Temperatures" and has been promoting a hydrogen production project using the HTTR (High Temperature Engineering Test Reactor). Furthermore, in collaboration with the National Nuclear Laboratory (NNL) of the United Kingdom and the National Centre for Nuclear Research (NCBJ) of Poland, JAEA are aiming to strengthen the international competitiveness of HTGR technology by further upgrading the HTGR technology developed in Japan through the construction and operation of the HTTR. In response to the growing interest in HTGR development in Japan and abroad, we have developed FAQs on HTGR related technologies in order to provide accurate technical information on HTGRs.

Journal Articles

Trends in radiation standard; Current status of secondary standards at JAEA

Tanimura, Yoshihiko; Yoshitomi, Hiroshi

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 66(1), p.42 - 45, 2024/01

no abstracts in English

Journal Articles

Validation of the applicability of the best-fit fatigue curves for 550$$^{circ}$$C in Mod.9Cr-1Mo steel to 1$$times$$10$$^{11}$$ cycles

Toyota, Kodai; Imagawa, Yuya; Onizawa, Takashi; Kato, Shoichi; Furuya, Yoshiyuki*

Nihon Kikai Gakkai Rombunshu (Internet), 89(928), p.23-00206_1 - 23-00206_15, 2023/12

In order to design fast reactors, it is necessary to consider high cycle fatigue of structural materials up to 1$$times$$10$$^{9}$$ cycles; to evaluate high cycle fatigue at 1$$times$$10$$^{9}$$ cycles, it is necessary to develop a best-fit fatigue curve applicable up to 1$$times$$10$$^{11}$$ cycles. In this study, high cycle fatigue tests were conducted under strain-controlled conditions and ultrasonic fatigue tests were also conducted to develop a high cycle fatigue evaluation method for Mod.9Cr-1Mo steel, which is a candidate material for fast reactor structural materials. Based on the test results, the best-fit fatigue curves were extended and the applicability of the JSME best-fit fatigue curves up to 1$$times$$10$$^{11}$$ cycles was verified.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2021)

Department of HTTR

JAEA-Review 2023-016, 82 Pages, 2023/09

JAEA-Review-2023-016.pdf:2.31MB

The High Temperature Engineering Test Reactor (HTTR) is the first Japanese High Temperature Gas-cooled Reactor (HTGR) with 30MW in thermal power and 950$$^{circ}$$C of maximum outlet coolant temperature that is constructed by the Japan Atomic Energy Agency located at Oarai-machi, Higashiibaraki-gun, Ibaraki-ken, Japan. The purpose of the HTTR is establishment of basic HTGR technologies, demonstration of HTGR safety characteristics and so on. The HTTR has had a lot of experience of HTGRs' operation and maintenance throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2021, as the HTTR completed activities to conform to the New Regulatory Requirements of Nuclear Regulation Authority, The HTTR restarted since the 2011 off the Pacific coast of Tohoku Earthquake and carried out the Loss-of-forced cooling test without Vessel Cooling System (VCS) operational at 9MW (Three gas circulators trip and VCS is stopped.) as the safety demonstration test. This report summarizes the activities carried out in the fiscal year 2021, which were the situation of the New Regulatory Requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

JAEA Reports

Annual report for FY2021 on the activities of Naraha Center for Remote Control Technology Development (April 1, 2021 - March 31, 2022)

Akiyama, Yoichi; Shibanuma, So; Yanagisawa, Kenichi*; Yamada, Taichi; Suzuki, Kenta; Yoshida, Moeka; Ono, Takahiro; Kawabata, Kuniaki; Watanabe, Kaho; Morimoto, Kyoichi; et al.

JAEA-Review 2023-015, 60 Pages, 2023/09

JAEA-Review-2023-015.pdf:4.78MB

Naraha Center for Remote Control Technology Development (NARREC) was established in Japan Atomic Energy Agency to promote a decommissioning work of Fukushima Daiichi Nuclear Power Station (Fukushima Daiichi NPS). NARREC consists of a Full-scale Mock-up Test Building and Research Management Building. Various test facilities are installed in these buildings for the decommissioning work of Fukushima Daiichi NPS. These test facilities are intended to be used for various users, such as companies engaged in the decommissioning work, research and development institutions, educational institutions and so on. The number of NARREC facility uses was 84 in FY2021. We participated booth exhibitions and presentations on the decommissioning related events. Moreover, we also contributed to the development of human resources by supporting the 6th Creative Robot Contest for Decommissioning. As a new project, "Narahakko Children's Classroom" was implemented for elementary school students in Naraha Town. This report summarizes the activities of NARREC in FY2021, such as the utilization of facilities and equipment of NARREC, the development of remote-control technologies for supporting the decommissioning work, arrangement of the remote-control machines for emergency response, and training for operators by using the machines.

Journal Articles

Secondary consolidation characteristic of bentonite by long-term consolidation tests of 2.7, 3.7 and 4 years

Takayama, Yusuke; Yamamoto, Yoichi*; Goto, Takahiro*

Jiban Kogaku Janaru (Internet), 18(3), p.317 - 330, 2023/09

It has been reported that the deformation greatly increased in the secondary consolidation process in the past long-term consolidation test of 1.8 years on Na-type bentonite/sand mixed soil. Therefore, we analyzed potential contributing factors in this behavior. A long-term consolidation test for about 10 years on bentonite and kaolinite was started using the test equipment with countermeasures against these factors. In this paper, the secondary consolidation behavior of bentonite was investigated based on the long-term consolidation test data for 2.7, 3.7 and 4 years. The results were generally consistent with the conventional findings on soil mechanics that the deformation due to secondary consolidation progresses linearly with respect to logarithm of time. This test will be continued for about 10 years and longer-term secondary consolidation behavior will be investigated.

Journal Articles

Analysis of the effect of pre-crack curvature in Mini-C(T) specimen on fracture toughness evaluation

Shimodaira, Masaki; Ha, Yoosung; Takamizawa, Hisashi; Katsuyama, Jinya; Onizawa, Kunio

Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 11 Pages, 2023/07

In the current structural integrity assessment of the reactor pressure vessel, the accurate reference temperature (T$$_{o}$$) based on the Master Curve method is necessary. The T$$_{o}$$ can be estimated by using the Mini-C(T) fracture toughness specimen in accordance with ASTM E1921 and JEAC4216, which prescribe the pre-crack straightness criteria. A requirement in ASTM E1921 has been revised in a decade to increase the accuracy and reasonability, and the applicable crack curvature has been varied by applied codes. The pre-crack curvature of the Mini-C(T) specimen might have an impact on the T$$_{o}$$ because of the variation of the plastic constraint. In this work, the effect of the crack curvature on the fracture toughness (K$$_{Jc}$$) evaluation using the Mini-C(T) specimen was quantitatively evaluated by using the finite element analysis (FEA) including the Weibull stress analysis, to discuss the difference in a requirement of the crack straightness in ASTM E1921 and JEAC4216. FEAs showed a possibility that the upper limit curvature would decrease the plastic constraint, and consequently obtain higher K$$_{Jc}$$ in the Mini-C(T) specimen. Furthermore, if the upper limit curvature according to the ASTM E1921-21 was allowed, the T$$_{o}$$ would be estimated as non-conservative based on the Weibull stress analysis. In contrast, the difference in (T$$_{o}$$) between the crack with upper limit curvature according to JEAC4216 and the ideal straight crack was not significant.

Journal Articles

Irradiation and post-irradiation examination technology for development of nuclear fuels and materials

Tsuchiya, Kunihiko

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 65(6), p.393 - 397, 2023/06

no abstracts in English

Journal Articles

Proposition of confirmation items on the borehole sealing for the disposal of radioactive waste

Murakami, Hiroaki; Nishiyama, Nariaki; Takeuchi, Ryuji; Iwatsuki, Teruki

Oyo Chishitsu, 64(2), p.60 - 69, 2023/06

In order to confirm the quality control items for borehole closure in radioactive waste disposal projects, in-situ borehole sealing tests using bentonite material were conducted. As a result, the closure performance was successfully demonstrated by comparing the data of water injection tests conducted before and after the installation of the closure material. However, the breakthrough was observed after closing, probably due to high differential pressure applied to the seal section. Thus, it is important to ascertain throughout the entire operation that the borehole is adequately closed. The placement and specifications of the closure material should be determined according to the hydrogeological structure in the borehole. The confirmation items to use bentonite for sealing material are identified to be: to consider swelling and density loss in the borehole; to place the planned depth using appropriate emplacement technique; to be placed without damage to seals when use some backfilling materials, considering effect of permeability on adjacent seals.

Journal Articles

Present status of the FRS/JAEA with newly established accredited JIS testing laboratory

Yoshitomi, Hiroshi

FBNews, (557), p.1 - 5, 2023/05

no abstracts in English

Journal Articles

Development of safety design philosophy of HTTR-Heat Application Test Facility

Aoki, Takeshi; Shimizu, Atsushi; Noguchi, Hiroki; Kurahayashi, Kaoru; Yasuda, Takanori; Nomoto, Yasunobu; Iigaki, Kazuhiko; Sato, Hiroyuki; Sakaba, Nariaki

Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05

The safety design philosophy is developed for the HTTR (High Temperature Engineering Test Reactor) heat application test facility connecting high temperature gas-cooled reactor (HTGR) and the hydrogen production plant. The philosophy was proposed to apply proven conventional chemical plant standards to the hydrogen production facility for ensuring public safety against anticipated disasters caused by high pressure and combustible gases. The present study also proposed the safety design philosophy to meet specific safety requirements identified to the nuclear facilities with coupling to the hydrogen production facility such as measures to ensure a capability of normal operation of the nuclear facility against a fire and/or explosion of leaked combustible material, and fluctuation of amount of heat removal occurred in the hydrogen production plant. The safety design philosophy will be utilized to establish its basic and detailed designs of the HTTR-heat application test facility.

Journal Articles

Establishment of JIS testing laboratory for radiation monitoring instruments

Yoshitomi, Hiroshi

Isotope News, (786), p.26 - 29, 2023/04

no abstracts in English

Journal Articles

High temperature mechanical properties and microstructure in 9Cr or 12Cr oxide dispersion strengthened steels

Mitsuhara, Masatoshi*; Kurino, Koichi*; Yano, Yasuhide; Otsuka, Satoshi; Toyama, Takeshi*; Onuma, Masato*; Nakashima, Hideharu*

Tetsu To Hagane, 109(3), p.189 - 200, 2023/03

 Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)

Oxide Dispersion Strengthened (ODS) ferritic steel, a candidate material for fast reactor fuel cladding, has low thermal expansion, good thermal conductivity, and excellent resistance to irradiation damage and high temperature strength. The origin of the excellent high-temperature strength lies in the dispersion of fine oxides. In this study, creep tests at 700 or 750$$^{circ}$$C, which are close to the operating temperatures of fast reactors, and high-temperature tensile tests at 900 to 1350 $$^{circ}$$C, which simulate accident conditions, were conducted on 9Cr ODS ferritic steels, M11 and MP23, and 12Cr ODS ferritic steel, F14, to confirm the growth behavior of oxides. In the M11 and F14 creep test samples, there was little oxide growth or decrease in number density from the initial state, indicating that dispersion strengthening by oxides was effective during deformation. After creep deformation of F14, the development of dislocation substructures such as dislocation walls and subgrain boundaries was hardly observed, and mobile dislocations were homogeneously distributed in the grains. The dislocation density increased with increasing stress during the creep test. In the high-temperature ring tensile tests of MP23 and F14, the strength of both steels decreased at higher temperatures. In MP23, elongation decreased with increasing test temperature from 900 to 1100 $$^{circ}$$C, but increased at 1200 $$^{circ}$$C, decreased drastically at 1250 $$^{circ}$$C, and increased again at 1300 $$^{circ}$$C. In F14, elongation decreased with increasing temperature. It was inferred that the formation of the $$delta$$-ferrite phase was responsible for this complex change in mechanical properties of MP23 from 1200 to 1300 $$^{circ}$$C.

1746 (Records 1-20 displayed on this page)