Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 799

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Radioactive particles from a range of past nuclear events; Challenges posed by highly varied structure and composition

Johansen, M. P.*; Child, D. P.*; Collins, R.*; Cook, M.*; Davis, J.*; Hotchkis, M. A. C.*; Howard, D. L.*; Howell, N.*; Ikeda, Atsushi; Young, E.*

Science of the Total Environment, 842, p.156755_1 - 156755_11, 2022/10

 Times Cited Count:0

Journal Articles

Accumulation mechanisms of radiocaesium within lichen thallus tissues determined by means of ${it in situ}$ microscale localisation observation

Dohi, Terumi; Iijima, Kazuki; Machida, Masahiko; Suno, Hiroya*; Omura, Yoshihito*; Fujiwara, Kenso; Kimura, Shigeru*; Kanno, Futoshi*

PLOS ONE (Internet), 17(7), p.e0271035_1 - e0271035_21, 2022/07

JAEA Reports

Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-010, 155 Pages, 2022/06

JAEA-Review-2022-010.pdf:9.78MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of the technology for preventing radioactive particles' dispersion during the fuel debris retrieval" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to clarify the behavior of microparticles in gas and liquid phases in order to steadily confine radioactive microparticles during fuel debris retrieval in Fukushima Daiichi Nuclear Power Station, TEPCO. As measures to prevent dispersion of microparticles, (1) a method to suppress the dispersion with minimum amount of water utilizing water spray etc., and (2) a method to suppress the dispersion by solidifying fuel

Journal Articles

Analysis of pulverization property of the collision-plate-type jet mill

Kawaguchi, Koichi; Segawa, Tomomi; Ishii, Katsunori

Funtai Kogakkai-Shi, 59(6), p.283 - 290, 2022/06

In the Japan Atomic Energy Agency, in order to effectively use the out-of-standard pellets in the fuel manufacturing process for high-speed furnaces, we are developing techniques for crushing and reusing them with raw material powder. By analyzing in detail the particle size distribution before and after grinding, it was shown that the grinding powder is composed of three different component particles having different characteristics of the particle size distribution. In addition, we examined the method of predicting pulverized powder particle size distribution from the supply powder particle size distribution.

Journal Articles

R&D on Accelerator Driven Nuclear Transmutation System (ADS) at J-PARC, 1; Accelerator Driven Nuclear Transmutation System (ADS)

Maekawa, Fujio

Purazuma, Kaku Yugo Gakkai-Shi, 98(5), p.201 - 205, 2022/05

The nuclear transmutation technology is a powerful solution to the "nuclear waste" problem that accompanies nuclear power generation. The Accelerator Driven System (ADS), which combines a high-intensity accelerator and a subcritical core, is a promising tool for nuclear transmutation. In this paper, we will explain the significance and principle of nuclear transmutation by ADS, design examples of ADS, partitioning and transmutation technology and its effects, required performance of high-intensity accelerators, overseas trends, etc.

Journal Articles

Multipole polaron in the devil's staircase of CeSb

Arai, Yosuke*; Kuroda, Kenta*; Nomoto, Takuya*; Tin, Z. H.*; Sakuragi, Shunsuke*; Bareille, C.*; Akebi, Shuntaro*; Kurokawa, Kifu*; Kinoshita, Yuto*; Zhang, W.-L.*; et al.

Nature Materials, 21(4), p.410 - 415, 2022/04

 Times Cited Count:1 Percentile:83.04(Chemistry, Physical)

JAEA Reports

Basic study for on-line monitoring of tiny particles including alpha emitters by aerosol time-of-flight mass spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2021-074, 104 Pages, 2022/03

JAEA-Review-2021-074.pdf:4.91MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Basic study for on-line monitoring of tiny particles including alpha emitters by aerosol time-of-flight mass spectroscopy" conducted in FY2019 and FY2020. Since the final year of this proposal was FY2020, the results for two fiscal years were summarized. The present study aims to conduct a feasibility study of Aerosol time-of-flight mass spectroscopy (ATOFMS) to on-line measurement of tiny particles containing alpha emitters which might be dispersed in cutting the debris in reactors of the Fukushima Daiichi Nuclear Power Station for realizing their real-time monitoring. In FY2020, we prepared and analyzed the (U,Zr)O$$_{2}$$ samples and the U solutions as model materials and measured the size distribution of the tiny

Journal Articles

Mechanisms of action of radon therapy on cytokine levels in normal mice and rheumatoid arthritis mouse model

Kataoka, Takahiro*; Naoe, Shota*; Murakami, Kaito*; Yukimine, Ryohei*; Fujimoto, Yuki*; Kanzaki, Norie; Sakoda, Akihiro; Mitsunobu, Fumihiro*; Yamaoka, Kiyonori*

Journal of Clinical Biochemistry and Nutrition, 70(2), p.154 - 159, 2022/03

 Times Cited Count:0 Percentile:0.01(Nutrition & Dietetics)

Journal Articles

Identification of carbon in glassy cesium-bearing microparticles using electron microscopy and formation mechanisms of the microparticles

Hidaka, Akihide

Nuclear Technology, 208(2), p.318 - 334, 2022/02

 Times Cited Count:1 Percentile:48.83(Nuclear Science & Technology)

The author previously proposed that the Cs bearing microparticle (Type A) may have been formed by melting and atomization of glass fibers (GF) of the HEPA filter in the SGTS due to flame and blast during the hydrogen explosion in Unit 3. If this hypothesis is correct, the Type A could contain or accompany carbon (C), that ignites spontaneously above 623 K, because of the limited time to be heated up, inclusion of C in the binder applied on the GF surface and closely located charcoal filter. As the previous studies did not focus on C, the present analyses were performed with EPMA whether the Type A contains C. The results showed that the Type A contained C originating from the binder, and non-spherical particles accompanied by the Type A and the film surrounding the Type A contained more C, which is thought to originate from the charcoal filter. These results cannot be explained by the other mechanisms proposed so far, and can be explained consistently by the author proposed hypothesis.

JAEA Reports

The Study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-050, 82 Pages, 2022/01

JAEA-Review-2021-050.pdf:2.89MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted in FY2020. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. An interdisciplinary collaborative study discussed the correlation between radiation dose and the biological effect by analyzing the samples of wild Japanese macaques exposed to radiation due to the accident of Fukushima Daiichi Nuclear Power Station and of animal experiments.

Journal Articles

Characterization of radiocesium-bearing microparticles with different morphologies in soil around the Fukushima Daiichi Nuclear Power Plant

Hagiwara, Hiroki; Funaki, Hironori; Shiribiki, Natsu*; Kanno, Marina*; Sanada, Yukihisa

Journal of Radioanalytical and Nuclear Chemistry, 331(1), p.415 - 426, 2022/01

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

Journal Articles

Study on sodium-water reaction jet evaluation model based on engineering approaches with particle method

Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*

Nihon Kikai Gakkai Rombunshu (Internet), 88(905), p.21-00310_1 - 21-00310_9, 2022/01

If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2021-023, 49 Pages, 2021/12

JAEA-Review-2021-023.pdf:2.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to develop a novel method to reduce the volume of contaminated soil caused by an accident at the Fukushima Daiichi Nuclear Power Station. The heavy liquid separation method, which was optimized in the previous year, was applied to nine soils collected in Fukushima Prefecture. As a result, radioactivity concentration and weight of the contaminated soils were reduced by half at six sites by separating the soils into two fractions u

Journal Articles

Toward mechanistic evaluation of critical heat flux in nuclear reactors, 2; Recent studies and future challenges toward mechanistic and reliable CHF evaluation

Okawa, Tomio*; Mori, Shoji*; Liu, W.*; Ose, Yasuo*; Yoshida, Hiroyuki; Ono, Ayako

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(12), p.820 - 824, 2021/12

The evaluation method of the critical heat flux based on the mechanism is needed for the efficient design and development of fuel in reactors and the appropriate safety evaluation. In this paper, the current researches relating to the mechanism of the critical heat flux are reviewed, and the issue to be considered in the future are discussed.

JAEA Reports

Semi-autonomous remote-control technology of an articulated mobile robot to recover from stuck states (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Electro-Communications*

JAEA-Review 2021-025, 33 Pages, 2021/11

JAEA-Review-2021-025.pdf:1.68MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Semi- autonomous remote-control technology of an articulated mobile robot to recover from stuck states" conducted in FY2020. The purpose of this work is to establish a recovery method of an articulated mobile robot from stuck states. In this work, a control method of the robot to recover from stuck states by using redundancy of the system is proposed. In addition, we develop two interfaces. One is a display interface as an operator can understand the situation of the robot and surrounding terrain, and the other is a control interface to provide a target motion using the proposed control method. Finally, the effectiveness of them is demonstrated by experiments using an actual robot.

Journal Articles

Experimental analysis on dynamics of liquid molecules adjacent to particles in nanofluids

Hashimoto, Shunsuke*; Nakajima, Kenji; Kikuchi, Tatsuya*; Kamazawa, Kazuya*; Shibata, Kaoru; Yamada, Takeshi*

Journal of Molecular Liquids, 342, p.117580_1 - 117580_8, 2021/11

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Quasi-elastic neutron scattering (QENS) and pulsed-field-gradient nuclear magnetic resonance (PFGNMR) analyses of a nanofluid composed of silicon dioxide (SiO$$_{2}$$) nanoparticles and a base fluid of ethylene glycol aqueous solution were performed. The aim was to elucidate the mechanism increase in the thermal conductivity of the nanofluid above its theoretical value. The obtained experimental results indicate that SiO$$_{2}$$ particles may decrease the self-diffusion coefficient of the liquid molecules in the ethylene glycol aqueous solution because of their highly restricted motion around these nanoparticles. At a constant temperature, the thermal conductivity increases as the self-diffusion coefficient of the liquid molecules decreases in the SiO$$_{2}$$ nanofluids.

Journal Articles

A 3D particle-based analysis of molten pool-to-structural wall heat transfer in a simulated fuel subassembly

Zhang, T.*; Morita, Koji*; Liu, X.*; Liu, W.*; Kamiyama, Kenji

Extended abstracts of the 2nd Asian Conference on Thermal Sciences (Internet), 2 Pages, 2021/10

For the Japanese sodium cooled fast reactor, a fuel subassembly with an inner duct structure (FAIDUS) was designed to avoid the re-criticality by preventing the large-scale pool formation. In the present study, using the finite volume particle method, the EAGLE ID1 test which was an in-pile test performed to demonstrate the effectiveness of FAIDUS was numerically simulated and the thermal-hydraulic mechanisms underlying the heat transfer process were analyzed.

Journal Articles

Water experiments on thermal striping phenomena at the core outlet of an advanced sodium-cooled fast reactor, 1; Proposal of countermeasures to mitigate temperature fluctuations around control rods

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki

Hozengaku, 20(3), p.89 - 96, 2021/10

Hot sodium from the fuel assembly can mix with cold sodium from the control rod (CR) channel and the blanket assemblies at the bottom plate of the Upper Internal Structure (UIS) of Advanced-SFR. Temperature fluctuation due to mixing of the fluids at different temperature between the core outlet and cold channel may cause high cycle thermal fatigue on the structure around the bottom of UIS. A water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of UIS. We focused on the temperature fluctuations near the primary and backup control rod channels, and studied the countermeasure structure to mitigate the temperature fluctuation through temperature distribution and flow velocity distribution measurements. As a result, effectiveness of the countermeasure to mitigate the temperature fluctuation intensity was confirmed.

Journal Articles

Water experiments on thermal striping phenomena at the core outlet of an advanced sodium-cooled fast reactor, 2; Proposal of countermeasures to mitigate temperature fluctuations around radial blanket fuel assemblies

Kobayashi, Jun; Aizawa, Kosuke; Ezure, Toshiki; Kurihara, Akikazu; Tanaka, Masaaki

Hozengaku, 20(3), p.97 - 101, 2021/10

Focusing on the thermal striping phenomena that occurs at a bottom of the internal structure of an advanced sodium-cooled fast reactor (Advanced-SFR) that has been designed by the Japan Atomic Energy Agency, a water experiment using a 1/3 scale 60 degree sector model simulating the upper plenum of the Advanced-SFR has been conducted to examine countermeasures for the significant temperature fluctuation generated around the bottom of Upper Internal Structure (UIS). In the previous paper, we reported the effect of measures to mitigate temperature fluctuations around the control rod channels. In this paper, the same test section was used, and a water experiment was conducted to obtain the characteristics of temperature fluctuations around the radial blanket fuel assembly. And the shape of the Core Instrumentation Support Plate (CIP) was modified, and it was confirmed that it was highly effective in alleviating temperature fluctuations around the radial blanket fuel assembly.

JAEA Reports

Prediction of RPV lower structure failure and core material relocation behavior with MPS method (Contract research)

Yoshikawa, Shinji; Yamaji, Akifumi*

JAEA-Research 2021-006, 52 Pages, 2021/09

JAEA-Research-2021-006.pdf:3.89MB

In Fukushima Daiichi Nuclear Power Station (referred to as "FDNPS" hereafter) unit2 and unit3, failure of the reactor pressure vessel (RPV) and relocation of some core materials (CRD piping elements and upper tie plate, etc.) to the pedestal region have been confirmed. In boiling water reactors (BWRs), complicated core support structures and control rod drive mechanisms are installed in the RPV lower head and its upper and lower regions, so that the relocation behavior of core materials to pedestal region is expected to be also complicated. The Moving Particle Semi-implicit (MPS) method is expected to be effective in overviewing the relocation behavior of core materials in complicated RPV lower structure of BWRs, because of its Lagrangian nature in tracking complex interfaces. In this study, for the purpose of RPV ablation analysis of FDNPS unit2 and unit3, rigid body model, parallelization method and improved calculation time step control method were developed in FY 2019 and improvement of pressure boundary condition treatment, stabilization of rigid body model, and calculation cost reduction of debris bed melting simulation were achieved in FY2020. These improvements enabled sensitivity analyses of melting, relocation and re-distribution behavior of deposited solid debris in RPV lower head on various cases, within practical calculation cost. As a result of the analyses of FDNPS unit2 and unit3, it was revealed that aspect (particles/ingots) and distribution (degree of stratification) of solidified debris in lower plenum have a great impact on the elapsed time of the following debris reheat and partial melting and on molten pool formation process, further influencing RPV lower head failure behavior and fuel debris discharging behavior.

799 (Records 1-20 displayed on this page)