検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 10 件中 1件目~10件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Measurement of H$$^{0}$$ particles generated by residual gas stripping in the Japan Proton Accelerator Research Complex linac

田村 潤; 二ツ川 健太*; 近藤 恭弘; Liu, Y.*; 宮尾 智章*; 森下 卓俊; 根本 康雄*; 岡部 晃大; 吉本 政弘

Nuclear Instruments and Methods in Physics Research A, 1049, p.168033_1 - 168033_7, 2023/04

 被引用回数:0 パーセンタイル:0.05(Instruments & Instrumentation)

J-PARCリニアックは、ビーム損失が重要な課題となる大強度加速器である。J-PARCリニアックでは、H$$^{-}$$ビームが機能分離型ドリフトチューブリニアック(SDTL)で191MeVまで加速され、その後、環結合構造型加速管(ACS)で400MeVまで加速される。H$$^{-}$$リニアックでは陽子リニアックよりもビーム損失の要因事象が多いため、ビーム損失低減のためにはビーム損失の原因を詳しく調べることが必須である。制御不能なH$$^{0}$$粒子を生成する電子ストリッピング現象は、H$$^{-}$$リニアックに特有なビーム損失要因である。J-PARCリニアックにおけるビーム損失の原因を明らかにするため、SDTLとACSの間のビーム輸送部に新しいビーム診断系を設置した。ここでは、H$$^{0}$$粒子をH$$^{-}$$ビームから分離し、H$$^{0}$$粒子が分布する範囲にグラファイト板を挿入してH$$^{0}$$粒子の強度プロファイルを測定することに成功した。ビームライン真空圧力の違いによるH$$^{0}$$粒子の強度変化を調べることで、SDTLセクションのH$$^{0}$$粒子の半分は、J-PARCリニアックの残留ガスストリッピングによって生成されていることを明らかにした。

論文

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

山本 風海; 金正 倫計; 林 直樹; Saha, P. K.; 田村 文彦; 山本 昌亘; 谷 教夫; 高柳 智弘; 神谷 潤一郎; 菖蒲田 義博; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 被引用回数:3 パーセンタイル:84.2(Nuclear Science & Technology)

J-PARC 3GeVシンクロトロン(RCS)は、最大1MWの大強度ビームを25Hzという早い繰り返しで中性子実験及び下流の主リングシンクロトロンに供給することを目的に設計された。2007年の加速器調整運転開始以降、RCSではビーム試験を通じて加速器の設計性能が満たされているかの確認を進め、必要に応じてより安定に運転するための改善を行ってきた。その結果として、近年RCSは1MWのビーム出力で連続運転を行うことが可能となり、共用運転に向けた最後の課題の抽出と対策の検討が進められている。本論文ではRCSの設計方針と実際の性能、および改善点について議論する。

論文

J-PARCにおける加速器駆動核変換システム(ADS)の研究開発,5; ADS用超伝導リニアックの研究開発

近藤 恭弘; 武井 早憲; Yee-Rendon, B.; 田村 潤

プラズマ・核融合学会誌, 98(5), p.222 - 226, 2022/05

ADSの要求を満たすドライバリニアックを実現するためには超伝導加速空洞が必須であり、従来常伝導を採用していた低エネルギー部について、近年の特に低エネルギー用の超伝導加速空洞開発の進展を反映した再設計を行った。また、最も使用実績の少ないスポーク型空洞について試作機による開発を行っている。本稿では、これら日本原子力研究開発機構における最新のADS用リニアックの研究開発について報告する。

論文

Calibration of epithermal neutron beam intensity for dosimetry at JRR-4

山本 和喜; 熊田 博明; 岸 敏明; 鳥居 義也; 櫻井 良憲*; 古林 徹*

Proceedings of 11th World Congress on Neutron Capture Therapy (ISNCT-11) (CD-ROM), 15 Pages, 2004/10

JRR-4において熱外中性子を用いたホウ素中性子捕捉療法を実施するために、熱外中性子ビーム強度を$$^{197}$$Auの共鳴吸収ピーク(4.9eV)で放射化される反応率を用いて測定した。原子炉出力補正係数及び計算/実験(C/E)スケーリング係数は実際の照射実験とシミュレーションとを合わせるために不可欠である。初めに、最適な検出器位置はMCNPコードを用いて求めた。MCNP計算の結果はコリメータから20cm以上の距離に置いた時、コリメータに置かれた被照射体の影響は1%未満になることを示した。したがって、われわれは3つの金線モニターをセットするためのホルダーをコリメータから約70cm離れたビスマスブロックの近傍に設置した。2つのスケーリング係数はファントム内の熱中性子束と金線モニターの反応率を測定する較正実験において決定された。熱外中性子ビーム強度の較正技術は熱外中性子の医療照射に応用された。

報告書

大強度陽子加速器施設(J-PARC)3GeV陽子ビーム輸送施設(3NBT)技術設計書

坂元 眞一; 明午 伸一郎; 今野 力; 甲斐 哲也; 春日井 好己; 原田 正英; 藤森 寛*; 金子 直勝*; 武藤 豪*; 小野 武博*; et al.

JAERI-Tech 2004-020, 332 Pages, 2004/03

JAERI-Tech-2004-020.pdf:17.93MB

日本原子力研究所と高エネルギー加速器研究機構が共同で建設する大強度陽子加速器施設(J-PARC)には、中性子ビーム及びミューオンビームを用いて、おもに物質科学,生命科学の研究が繰り広げられる物質・生命科学実験施設が建設される。この実験施設では、3GeVシンクロトロンで加速された大強度陽子ビームにより、中性子,ミューオンを生成する。3GeVシンクロトロンから物質・生命科学実験施設までの陽子ビームを効率よく輸送し、中性子生成標的,ミューオン標的へ的確にビーム照射を行う陽子ビーム輸送施設(3NBT)の設計全体をまとめる。

論文

Target station design of 1 MW spallation neutron source at the high intensity proton accelerator facilities J-PARC

高田 弘; 前川 藤夫; 本村 士郎*; 吉田 勝彦*; 寺奥 拓史*; 明午 伸一郎; 坂井 昭夫*; 春日井 好己; 兼近 修二*; 大竹 秀範*; et al.

Proceedings of ICANS-XVI, Volume 3, p.1115 - 1125, 2003/07

大強度陽子加速器計画で建設する1MW核破砕中性子源はヘリウムベッセル,ベッセルサポートシリンダ,遮蔽ブロック,23本の中性子ビームライン,陽子ビーム窓等の機器で構成される。機器はライナーの内側に配置され、ヘリウムベッセルを中心とし、その周囲を中性子ビームシャッターを含む鉄鋼製の遮蔽で取り囲む。鉄遮蔽の外周には重コンクリートを配置し、その外表面の線量率が12.5$$mu$$Sv/hを超えないことを設計条件とした。ライナーの外形は直径9.8mであり、重コンの厚さは2.2-2.7mである。ライナー内は遮蔽体の除熱とNOxガスの発生抑制のため乾燥空気を循環させる。このようなステーション構造の概要と機器構造の各論、例えば中性子ビームシャッターは2本ロッド懸垂方式の直方体状で、その一部にガイド管等を装着したダクトを挿入できる構造であること、について報告する。

論文

The JAERI-KEK joint project for the high-intensity proton accelerator, J-PARC

山崎 良成

Proceedings of 2003 Particle Accelerator Conference (PAC 2003) (CD-ROM), p.576 - 580, 2003/00

今、J-PARCと名称が決まった原研KEK大強度陽子加速器統合計画は400MeVのリニアック、3GeVで25Hzの速い繰り返しのシンクロトロン(RCS),50GeVの主シンクロトロン(MR)から成る。MW級のパルス核破砕中性子源として、蓄積リングを使うSNSやESSと対照的にJ-PARCではRCSを使用している。この方式は、主として数10GeVの陽子加速を行うために、そのブースターとしてRCSを選んだのであるが、それ自体、蓄積リング方式よりも幾つかの長所を持っている。低エネルギービーム輸送系(LEBT),3MeVのRFQリニアック,中間エネルギービーム輸送系(MEBT)のビーム試験を行った。そこでは、LEBTに前置チョッパーが、MEBTにチョッパーが装着されている。このチョッパー系はJ-PARCに独自に開発されたものであり、SNSとの比較は比較は興味深い。

論文

Longitudinal beam dynamincs on 3 GeV PS in JAERI-KEK joint project

山本 昌亘; 田村 文彦; 絵面 栄二*; 橋本 義徳*; 森 義治*; 大森 千広*; Schnase, A.*; 高木 昭*; 上杉 智教*; 吉井 正人*

Proceedings of 8th European Particle Accelerator Conference (EPAC 2002), p.1073 - 1075, 2002/00

JAERI-KEK統合計画大強度陽子加速器施設の3GeV陽子シンクロトロンにおいては、大強度養子ビームを加速するため、ビーム損失を押さえる方策が必要となる。縦方向ビーム運動については、空間電荷効果を提言するため高周波加速電圧に2倍高調波を重畳し、なおかつ運動量オフセットを持たせた入射ペインティング方式を採用することで、バンチングファクターを0.4まで改善できることを粒子追跡計算コードによって確認した。また、高周波加速システムに与えるビーム負荷の影響が強く、特に入射と取りだしの付近ではその影響が非常に大きくなるため、ビーム負荷補償システムを高周波加速システムに導入することを考えており、ビーム負荷補償が効果的に働くことを粒子追跡計算コードによって確認した。

報告書

Measurement of profile and intensity of proton beam by an integrated current transformer and a segmented parallel-plate ion chamber for the AGS-Spallation Target Experiment (ASTE)

明午 伸一郎; 中島 宏; 高田 弘; 春日井 好己; 猪野 隆*; 前川 藤夫; Hastings, J.*; 渡辺 昇; 大山 幸夫; 池田 裕二郎

JAERI-Data/Code 2001-014, 23 Pages, 2001/03

JAERI-Data-Code-2001-014.pdf:1.55MB

1.94,12及び24GeV陽子を水銀ターゲットに入射し、ターゲット内の温度,圧力波及び中性子特性を測定するAGS核破砕ターゲット実験における入射ビームのプロファイルと強度の測定を行った。入射陽子ビームプロファイルのオンライン検出器としてセグメント化された平行平板電離箱(CHIDORI)を用いた。また、プロファイルはアルミ箔を陽子ビームで放射化し、これから生成する$$gamma$$及び$$beta$$線の強度分布をイメージングプレート(IP)で検出する方法を測定した。ビーム強度の測定には積分型カレントトランスフォーマー(ICT)及び銅箔の放射化法を用いた。CHIDORI及びIPによるプロファイルの結果は良い一致を示した。また、ICT法と放射化法によるビーム強度の結果は、12及び24GeV陽子に対し3%以内で良い一致を示した。さらに、これらの値はAGSのチームが設置したセグメント型ワイヤー電離箱(SWIC)及び二次放出電離箱(SEC)による結果と良い一致を示した。以上より、モニター手法を確立し温度及び圧力波等の実験解析が入射陽子あたりで規格化できるようになった。

報告書

Design of a high brightness ion source for the Basic Technology Accelerator(BTA)

奥村 義和; 渡邊 和弘

JAERI-M 92-024, 23 Pages, 1992/03

JAERI-M-92-024.pdf:0.87MB

技術開発用加速器と呼ばれる10MeV,10mA,CWの陽子加速器のためのイオン源を設計し、製作した。このイオン源は多極磁場型プラズマ源と2段加速系から構成され、極めて高輝度の陽子ビーム(100keV,120mA,エミッタンス0.5$$pi$$mm・mrad)を生成する。このイオン源の基本設計方針とビーム光学やプラズマ生成部の磁場配位、プロトン比、ガス効率等に関する計算結果について述べる。

10 件中 1件目~10件目を表示
  • 1