Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 85

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Basic study on seismic respnse of soil-structure interaction system using equivalent linear three-dimensional FEM analysis of reactor building

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Nabeshima, Kunihiko*; Choi, B.; Nishida, Akemi

Kozo Kogaku Rombunshu, B, 68B, p.271 - 283, 2022/04

This paper aims to evaluate the applicability of the equivalent linear analysis method for reinforced concrete, which uses frequency-independent hysteretic damping, to the seismic design of reactor building of the nuclear power plant. To achieve this, we performed three-dimensional FEM analyses of the soil-structure interaction system, focusing on the nonlinear and equivalent linear seismic behavior of a reactor building under an ideal soil condition. From these results, the method of equivalent analysis showed generally good correspondence with the method of the nonlinear analysis, confirming the effectiveness. Moreover, the method tended to lower the structural stiffness compared to the nonlinear analysis model. Therefore, in the evaluation of the maximum shear strain, we consider that the results were more likely to be higher than the results of nonlinear analysis.

JAEA Reports

Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Hokkaido University*

JAEA-Review 2021-070, 98 Pages, 2022/03

JAEA-Review-2021-070.pdf:4.75MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Study on rational treatment/disposal of contaminated concrete waste considering leaching alteration" conducted in FY2020. The present study aims to understand migration behaviors of radionuclides in relation to the properties of concrete materials altered due to leaching, to develop a model to simulate the migration behaviors based on the experimental findings, and to analyze waste management scenarios for radioactive concrete. The focus of the study is the underground concrete structures of Fukushima Daiichi Nuclear Power Station, which is in contact with contaminated water.

Journal Articles

Applicability of equivalent linear analysis to reinforced concrete shear walls; 3D FEM simulation of experiment results of seismic wall ultimate behavior

Ichihara, Yoshitaka*; Nakamura, Naohiro*; Moritani, Hiroshi*; Horiguchi, Tomohiro*; Choi, B.

Nihon Genshiryoku Gakkai Wabun Rombunshi, 21(1), p.1 - 14, 2022/03

In this study, we aim to approximately evaluate the effect of nonlinearity of reinforced concrete structures through seismic response analysis using the equivalent linear analysis method. A simulation analysis was performed for the ultimate response test of the shear wall of the reactor building used in an international competition by OECD/NEA in 1996. The equivalent stiffness and damping of the shear wall were obtained from the trilinear skeleton curves proposed by the Japan Electric Association and the hysteresis curves proposed by Cheng et al. The dominant frequency, maximum acceleration response, maximum displacement response, inertia force-displacement relationship, and acceleration response spectra of the top slab could be simulated well up to a shear strain of approximately $$gamma$$=2.0$$times$$10$$^{-3}$$. The equivalent linear analysis used herein underestimates the maximum displacement response at the time of ultimate fracture of approximately $$gamma$$=4.0$$times$$10$$^{-3}$$. Moreover, the maximum shear strain of the shear wall could not capture the locally occurring shear strain compared with that of the nonlinear analysis. Therefore, when employing this method to evaluate the maximum shear strain and test results, including those during the sudden increase in displacement immediately before the fracture, sufficient attention must be paid to its applicability.

JAEA Reports

Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2021-047, 127 Pages, 2022/01

JAEA-Review-2021-047.pdf:5.57MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted in FY2020. The present study aims to construct a database for quantitative prediction of contaminated reinforced concrete inside the reactor building. In FY2020, in chapter 3.1, in order to obtain the data for the evaluation of mesoscale cracking behavior, the equipment for the making and the measurement of the test specimens were prepared, the evaluation method was confirmed, and preliminary experiments were carried out. And, for the prediction of cracking on the surface of thick concrete wall, the rigid-body spring network model associated with heat and moisture

JAEA Reports

Analysis of the radioactivity concentrations in radioactive waste generated from JPDR Facility

Tobita, Minoru*; Haraga, Tomoko; Endo, Tsubasa*; Omori, Hiroyuki*; Mitsukai, Akina; Aono, Ryuji; Ueno, Takashi; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2021-013, 30 Pages, 2021/12

JAEA-Data-Code-2021-013.pdf:1.47MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JPDR facility. In this report, we summarized the radioactivity concentrations of 21 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples in fiscal year 2018-2019.

Journal Articles

Modelling concrete degradation by coupled non-linear processes

Oda, Chie; Kawama, Daisuke*; Shimizu, Hiroyuki*; Benbow, S. J.*; Hirano, Fumio; Takayama, Yusuke; Takase, Hiroyasu*; Mihara, Morihiro; Honda, Akira

Journal of Advanced Concrete Technology, 19(10), p.1075 - 1087, 2021/10

Concrete in a transuranic (TRU) waste repository is considered a suitable material to ensure safety, provide structural integrity and retard radionuclide migration after the waste containers fail. In the current study, coupling between chemical, mass-transport and mechanical, so-called non-linear processes that control concrete degradation and crack development were investigated by coupled numerical models. Application of such coupled numerical models allows identification of the dominant non-linear processes that will control long-term concrete degradation and crack development in a TRU waste repository.

Journal Articles

General overview of the research project investigating the radionuclide solution behavior in mock mortar matrix modeled after conditions at the Fukushima-Daiichi Nuclear Power Station

Igarashi, Go*; Haga, Kazuko*; Yamada, Kazuo*; Aihara, Haruka; Shibata, Atsuhiro; Koma, Yoshikazu; Maruyama, Ippei*

Journal of Advanced Concrete Technology, 19(9), p.950 - 976, 2021/09

JAEA Reports

Study on the radioactivity evaluation method of biological shielding concrete of JPDR for near surface disposal

Kochiyama, Mami; Okada, Shota; Sakai, Akihiro

JAEA-Technology 2021-010, 61 Pages, 2021/07

JAEA-Technology-2021-010.pdf:3.56MB
JAEA-Technology-2021-010(errata).pdf:0.75MB

It is necessary to evaluate the radioactivity inventory in wastes in order to dispose of radioactive wastes generated from dismantling nuclear reactor in the shallow ground. In this report, we examined radioactivity evaluation method for near surface disposal about biological shield concrete near the core generated from the dismantling of JPDR. We calculated radioactive concentration of the target biological concrete using the DORT code and the ORIGEN-S code, and we estimated radioactivity concentration Di (Bq/t). For DORT calculation, the cross-section library created from the MATXSLIB-J40 file from JENDL-4.0 was used, and for ORIGEN-S, the attached library of SCALE6.0 was used. As a result of comparing the calculation results of the radioactivity concentration with the past measured values in the radial direction and the vertical direction, we found that the trends were generally the same. We calculated radioactive concentration of the target biological concrete Di (Bq/t), and we compared with the estimated Ci (Bq/t) equivalent to the dose criteria of trench disposal calculated for 140 nuclides. As a result we inferred that the except for about 2% of target waste could be disposed of in the trench disposal facility. We also preselected important nuclides for trench disposal based on the ratios (Di/Ci) for each nuclide, H-3, C-14, Cl-36, Ca-41, Co-60, Sr-90, Eu-152 and Cs-137 were selected as important nuclides.

Journal Articles

The Impact of cement on argillaceous rocks in radioactive waste disposal systems; A Review focusing on key processes and remaining issues

Wilson, J.*; Bateman, K.; Tachi, Yukio

Applied Geochemistry, 130, p.104979_1 - 104979_19, 2021/07

 Times Cited Count:1 Percentile:0.56(Geochemistry & Geophysics)

The concept of deep geological disposal will include the multiple use of cement-based materials. In the case of argillaceous host rocks, the presence of hyperalkaline cement porefluid results in the destabilization of primary minerals in the argillite, resulting in the development of a zone of alteration at cement-rock interfaces. The process understanding gained from experimental, analogue, and modelling studies has been reviewed, and remaining areas of uncertainty identified. Although there is a reasonably good understanding of the mineral assemblages that are likely to occur due to cement-rock interactions, there are still some areas where a degree of uncertainty remains, in particular: the evolution of cement-argillite interfaces at T $$>$$ 25$$^{circ}$$C; the rates at which secondary minerals form; the extent of pore clogging due to secondary mineral precipitation; the implications of alteration for radionuclide transport.

JAEA Reports

Calculation of the amount of leaching water from concrete-pit facilities under various facility design conditions

Nagao, Rina; Namekawa, Maki*; Totsuka, Masayoshi*; Nakata, Hisakazu; Sakai, Akihiro

JAEA-Technology 2021-009, 139 Pages, 2021/06

JAEA-Technology-2021-009.pdf:13.96MB

Japan Atomic Energy Agency is the implementing body of the near surface disposal of low-level radioactive waste (LLW) generated from research facilities and other facilities. Concrete-pit disposal are considered as a method of disposing of the LLW. Since the concrete-pits are placed at deeper position than the groundwater level, we need to consider that radionuclides might migrate with the flow of groundwater. Accordingly, in order to explain the safety of the concrete-pit disposal facility, it is necessary to investigate the flow of groundwater and the volumetric flow rate of leaching water from the facility. Therefore, in this report, sensitivity analysis of the volumetric flow rate of leaching water from concrete-pit was carried out by varying the permeability of cover-soil filled with in outside of the lateral sides of the bentonite mixed soil (BMS) and the conditions of the BMS on the upper part of the concrete-pits. As a result of the analysis, when the BMS is normal condition, the volumetric flow rate of leaching water from the concrete-pits is reduced by lowering permeability of the lateral cover-soil. However, in the case of occurring the deterioration of the function of BMS on the upper part of the concrete-pit, significant reduction of the volumetric flow rate of leaching water is not seen even if the permeability of the lateral cover-soil is lowered. Therefore, taking into consideration the possibility of the deterioration of the function of BMS on the upper part of the concrete-pit, it is necessary to consider that cover-soil with low permeability is equipped on the upper part of the BMS.

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-3 and JPDR facilities

Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-022, 34 Pages, 2021/03

JAEA-Data-Code-2020-022.pdf:1.74MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{133}$$Ba, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples.

Journal Articles

A Project focusing on the contamination mechanism of concrete after the accident at Fukushima Daiichi Nuclear Power Plant

Yamada, Kazuo*; Maruyama, Ippei*; Haga, Kazuko*; Igarashi, Go*; Aihara, Haruka; Tomita, Sayuri*; Kiran, R.*; Osawa, Norihisa*; Shibata, Atsuhiro; Shibuya, Kazutoshi*; et al.

Proceedings of International Waste Management Symposia 2021 (WM 2021) (CD-ROM), 10 Pages, 2021/03

Journal Articles

Leaching behavior of prototypical Corium samples; A Step to understand the interactions between the fuel debris and water at the Fukushima Daiichi reactors

Nakayoshi, Akira; Jegou, C.*; De Windt, L.*; Perrin, S.*; Washiya, Tadahiro

Nuclear Engineering and Design, 360, p.110522_1 - 110522_18, 2020/04

 Times Cited Count:5 Percentile:84.6(Nuclear Science & Technology)

JAEA Reports

The In-situ experiment for performance confirmation of engineered barrier system at Horonobe Underground Research Laboratory; Installation of engineered barrier system and backfilling the test niche at the 350m gallery

Nakayama, Masashi; Ono, Hirokazu

JAEA-Research 2019-007, 132 Pages, 2019/12

JAEA-Research-2019-007.pdf:11.29MB
JAEA-Research-2019-007-appendix(CD-ROM).zip:39.18MB

The Horonobe Underground Research Laboratory (URL) Project has being pursued by Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host sedimentary formation at Horonobe, northern Hokkaido. The URL Project consists of two major research areas, "Geoscientific Research" and "Research and Development on Geological Disposal Technologies". The in-situ experiment for performance confirmation of engineered barrier system (EBS experiment) had been prepared from 2013 to 2014 fiscal year at GL-350m gallery, and heating by electric heater in simulated overpack had started in January, 2015. One of objectives of the EBS experiment is acquiring data concerned with Thermal-Hydrological-Mechanical-Chemical (THMC) coupled behavior. These data will be used in order to confirm the performance of engineered barrier system. This report shows following works had carried out at the GL-350 m gallery. Excavation of a test niche and a test pit, Setting buffer material blocks and a simulated overpack into the test pit, Backfilling the niche by compaction backfilling material and setting backfilling material blocks, Casting concrete type plug and contact grouting, Consolidate measurement system and start measuring.

Journal Articles

New project on the analysis of contamination mechanisms of concrete at the Fukushima Daiichi Nuclear Power Station

Yamada, Kazuo*; Maruyama, Ippei*; Koma, Yoshikazu; Haga, Kazuko*; Igarashi, Go*; Shibuya, Kazutoshi*; Aihara, Haruka

Proceedings of International Waste Management Symposia 2019 (WM 2019) (CD-ROM), 6 Pages, 2019/03

Journal Articles

Diffusion and sorption behavior of HTO, Cs, I and U in mortar

Akagi, Yosuke*; Kato, Hiroyasu*; Tachi, Yukio; Sakamoto, Hiroyuki*

Progress in Nuclear Science and Technology (Internet), 5, p.233 - 236, 2018/11

A large amount of radioactive contaminated concrete will be generated from the decommissioning in the Fukushima Dai-ichi Nuclear Power Plant (NPP). For developing the plans of decommissioning and waste management including decontamination and disposal, it is important to estimate radionuclides inventory and concentration distribution in the concrete materials. In this study, effective diffusivities (De) and distribution coefficients (Kd) of HTO, Cs, I and U in OPC mortar were measured by through-diffusion and batch sorption experiments. De values derived were in the sequence of HTO, I, Cs, U, implying that cation exclusion effects may be important mechanisms in OPC mortar. Kd values derived by batch tests were higher by more than one order of magnitude than the diffusion-derived Kd values, indicating that crushing of samples had a strong influence on sorption. Diffusion and sorption mechanisms in OPC mortar were evaluated to predict the penetration behavior of these radionuclides.

Journal Articles

A Study on self-terminating behavior of sodium-concrete reaction, 2

Kawaguchi, Munemichi; Miyahara, Shinya; Uno, Masayoshi*

Journal of Nuclear Science and Technology, 55(8), p.874 - 884, 2018/08

 Times Cited Count:3 Percentile:45.99(Nuclear Science & Technology)

As parts of severe accident studies in sodium-cooled fast reactor, experiments were performed to investigate the termination mechanism of sodium-concrete reaction (SCR). In the experiment, the reaction time was controlled to investigate the distribution change of sodium (Na) and the reaction products in the pool and around the reaction front. In the results, the Na around the reaction front decreased from the enough amount with the reaction time. The concentrations were 18-24 wt.% for Na, and 22-18 wt.% for Si after the termination. From the thermodynamics calculations, the stable materials around the reaction front comprised more than 90 wt.% solid products such as Na$$_{2}$$SiO$$_{3}$$, and no Na. Further, the distribution of Na and reaction products could be explained by a steady-state sedimentation-diffusion model. At the early stage of SCR, the reaction products were suspended as particles in the Na pool because of the high H$$_{2}$$-generation rate. As the concrete ablation proceeds, they start settling down due to the decreased H$$_{2}$$-generation rate, thereby allowing SCR termination. It was concluded that SCR termination was caused by the sediment of the reaction products and the lack of Na around the reaction front.

Journal Articles

Discussion about sodium-concrete reaction in presence of internal heater

Kawaguchi, Munemichi; Miyahara, Shinya; Uno, Masayoshi*

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Sodium-concrete reaction (SCR) is one of the important phenomena during severe accidents in sodium-cooled fast reactors (SFRs) owing to the presence of large sources of hydrogen and aerosols in the containment vessel. In this study, SCR experiments with an internal heater (800$$^{circ}$$C) were performed to investigate the chemical reaction under the internal heater. Furthermore, the effects of the internal heater on the self-termination mechanism were discussed. Because the internal heater hindered the transport of Na, the moisture in the concrete, and reaction products, Na could permeate and react with the surface concrete at the periphery of the internal heater. As the SCR proceeded, the reaction products accumulated under the internal heater and disturbed the Na diffusion. Therefore, the Na concentration under the internal heater decreased relatively lower, and the concrete ablation depth under the internal heater decreased compared to that under the periphery of the internal heater. However, the Na concentration around the reaction front was about 30 wt.% despite the position of the internal heater. The Na concentration was similar to that of Na$$_2$$SiO$$_3$$, which was almost same as that in our past study. It was found that the Na concentration condition was one of the dominant parameters for the self-termination of SCR, even in the presence of the internal heater.

Journal Articles

Three-dimensional numerical study on pool stratification behavior in molten corium-concrete interaction (MCCI) with MPS method

Li, X.; Sato, Ikken; Yamaji, Akifumi*; Duan, G.*

Proceedings of 26th International Conference on Nuclear Engineering (ICONE-26) (Internet), 8 Pages, 2018/07

Molten corium-concrete interaction (MCCI) is an important ex-vessel phenomenon that could happen during the late phase of a hypothetical severe accident in a light water reactor. In the present study, a three-dimensional (3-D) numerical study has been performed to simulate COMET-L3 test carried out by KIT with a stratified molten pool configuration of simulant materials with improved MPS method. The heat transfer between corium/crust/concrete was modeled with heat conduction between particles. Moreover, the potential influence of the siliceous aggregates was also investigated by setting up two different case studies since there was previous study indicating that siliceous aggregates in siliceous concrete might contribute to different axial and radial concrete ablation rates. The simulation results have indicated that metal melt as corium in MCCI can have completely different characteristics regarding concrete ablation pattern from that of oxidic corium, which needs to be taken into consideration when assessing the containment melt-through time in severe accident management.

Journal Articles

Deformation analysis of reinforced concrete using neutron imaging technique

Koyama, Taku*; Ueno, Kazuki*; Sekine, Mariko*; Matsumoto, Yoshihiro*; Kai, Tetsuya; Shinohara, Takenao; Iikura, Hiroshi; Suzuki, Hiroshi; Kanematsu, Manabu*

Materials Research Proceedings, Vol.4, p.155 - 160, 2018/05

 Times Cited Count:0 Percentile:0.2

85 (Records 1-20 displayed on this page)