Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Licensing Application Group, Fuels and Materials Department
JAEA-Testing 2024-002, 20 Pages, 2024/08
The contamination accident occurred at Plutonium Fuel Research Facility (PFRF) in Japan Atomic Energy Agency (JAEA) Oarai Research and Development Institute on June 6, 2017. During the work of opening the fuel storage container and checking the properties of the contents, the plastic bag that double-packed the inner container burst. The scattering of the fuels contaminated the work room and exposed the worker. The cause of the plastic bag burst was that the enclosed epoxy resin was decomposed by -rays and the internal pressure increased due to the generated hydrogen gas. The 54 storage containers containing plutonium held at PFRF also at risk of increasing internal pressure. Therefore, an opening inspection was conducted to confirm the contents of the storage container in the hot cell. In addition, the contents of storage containers that may generate gas were stabilized. We are planning to transport the fuel storage containers out to another facility for the decommission of PFRF. The other 9 storage containers include oxide raw material powder: Pu + U in excess of 220 g. In order to decrease to less than 220 g (the limit of transport cask), the metal inner containers in the storage container were taken out and repacked in another storage container. This report describes advance measures such as permit application and the details of about storage container opening inspection and metal inner container repacking.
Kato, Tomoaki; Yamagishi, Isao
JAEA-Technology 2023-018, 53 Pages, 2023/11
In the decommissioning of Fukushima Daiichi Nuclear Power Station, radioactive carbonate slurry waste was generated using the Advanced Liquid Processing System (ALPS) pretreatment and temporarily stored in a high integrity container (HIC). In 2015, overflow of supernatant from HIC estimate as bubble retention in the carbonate slurry was discovered, increasing the need for a safety assessment of the carbonate slurry stored the HIC (HIC slurry). In this study, a carbonate slurry (simulated slurry) was prepared according to the Mg/Ca mass ratio in the ALPS inlet water of the HIC slurry which overflew the HIC. The effects of reaction time during the pretreatment process, suspended solids concentration (SS concentration), and settling time on the particle composition, morphology and rheological properties of the slurry were investigated. Evaluating the effect of reaction time and concentration process on chemical properties in slurry production, the effect of the reaction time was not confirmed in the simulated slurry that had undergone the concentration process, and slurry prepared at SS concentration of 150 g/L was composed of formless particles have a particle diameter of 0.4 m or less. We also investigate the effect of SS concentration on sedimentability, decrease in SS concentration by dilution with processing solution contributed to an increase in the initial slurry settling velocity. Furthermore, two different flow characteristics were observed depending on the settling time, suggesting that the slurry at the initial settling time has non-Bingham flow properties, whereas it changes to Bingham flow properties as the settling time becomes longer. In addition, yield stress was increased with settling time, and this yield stress was found to be exponentially proportional to the density of the slurry. These results provide knowledge to estimate the current state of HIC slurry and are expected to contribute to the safety assessment.
Horita, Takuma; Yamagishi, Isao; Nagaishi, Ryuji; Kashiwaya, Ryunosuke*
JAEA-Technology 2021-012, 34 Pages, 2021/07
Waste mainly consisting of carbonate precipitates (carbonate slurry) from the Advanced Liquid Processing System (ALPS) and the improved ALPS at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Holdings, Inc. have been storing in the High Integrity Container (HIC). The supernatant solution of carbonate slurry contained in some of HICs were overflowed in April of 2015. The all of level of liquid in the HICs were investigated; however, almost of the HICs were under the level of overflow. The mechanism of overflow suggested to be depending on the difference of the properties of the carbonate slurry such as the retention/release characteristics of the bubbles. Therefore, in order to clarify the mechanism of leakage, the repeatability experiment was carried out by using simulated carbonate slurry. The simulated carbonate slurry was perpetrated by using the same cross-flow filter system of the actual ALPS. Moreover, the preparative conditions for the simulated carbonate slurry were the same as Mg/Ca concentration ratio in inlet water of the ALPS (raw water) and the ALPS operating conditions. The chemical characteristics of simulated carbonate slurries were revealed by ICP-AES, pH meter, etc. The density of the settled slurry layer tended to increase depending on the calcium concentration in the raw water. The bubble injection test was conducted in order to investigate the bubble retention/release behavior in the simulated carbonate slurry layer. The simulated carbonate slurry with high settling density, which was generated by high calcium concentration solution was revealed to retain the injected bubbles. Since the ratio of concentration calcium and magnesium during the carbonate slurry generation is assumed to affect the retention of bubbles in the slurry layer, the information on the composition of raw water is one of important factor for overflow of HICs.
Sugita, Yutaka; Taniguchi, Naoki; Makino, Hitoshi; Kanamaru, Shinichiro*; Okumura, Taisei*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 19(3), p.121 - 135, 2020/09
A series of structural analysis of disposal containers for direct disposal of spent fuel was carried out to provide preliminary estimates of the required pressure resistance thickness of the disposal container. Disposal containers were designed to contain either 2, 3 or 4 spent fuel assemblies in linear, triangular or square arrangements, respectively. The required pressure resistance thickness was evaluated using separation distance of the housing space for each spent fuel assembly as a key model parameter to obtain the required thickness of the body and then the lid of the disposal container. This work also provides additional analytical technical knowledge, such as the validity of the setting of the stress evaluation line and the effect of the model length on the analysis. These can then be referred to and used again in the future as a basis for conducting similar evaluations under different conditions or proceeding with more detailed evaluations.
Ioka, Ikuo; Kuriki, Yoshiro*; Iwatsuki, Jin; Kawai, Daisuke*; Yokota, Hiroki*; Inagaki, Yoshiyuki; Kubo, Shinji
Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08
A thermochemical water-splitting iodine-sulfur processes (IS process) is one of candidates for the large-scale production of hydrogen using heat from solar power. Severe corrosive environment which is thermal decomposition of sulfuric acid exists in the IS process. A hybrid material with the corrosion-resistance and the ductility was made by a plasma spraying and laser treatment. The specimen had excellent corrosion resistance in the condition of 95 mass% boiling sulfuric acid. This was attributed to the formation of SiO on the surface. The container using the hybrid material was experimentally made. The pre-oxidized container using hybrid technique was prepared for the corrosion test in boiling sulfuric acid to evaluate the corrosion characteristics of the container. There was no detaching of the surface with the weld part and the R processing. We proposed the calculation method of corrosion rate from the ions dissolved in the sulfuric acid solution after the corrosion test.
Marufuji, Takato; Sato, Takumi; Ito, Hideaki; Suzuki, Hisashi; Fujishima, Tadatsune; Nakano, Tomoyuki
JAEA-Technology 2019-006, 22 Pages, 2019/05
Radioactive contamination incident occurred at Plutonium Fuel Research Facility (PFRF) in Oarai Research and Development Institute, Japan Atomic Energy Agency on June 6, 2017. During inspection work of storage container containing nuclear fuel materials, the PVC bag packaging in the storage container ruptured when a worker opened the lid in the hood, and a part of contents was spattered over the room. The cause of the increase of internal pressure of the storage container was gas generation by alpha radiolysis of the epoxy resin mixed with nuclear fuel materials. Opening inspection of about 70 similar containers stored in PFRF has been planned to confirm the condition of the contents and to stabilize the stored materials containing organic compounds. For safe and reliable open inspection of the storage containers with high internal pressure in the glove box, it is necessary to develop a pressure-resistant chamber in which the storage containers are opened and the contents are inspected under gastight condition. This report summarizes the concerns and countermeasures of the chamber design and the design results of the chamber.
Restoration Activity Team for the PFRF Contamination Incident
JAEA-Review 2019-001, 58 Pages, 2019/03
The contamination accident occurred in a laboratory room (Room No.108) of Plutonium Fuel Research Facility (PFRF) in Japan Atomic Energy Agency (JAEA), Oarai Research and Development Institute on June 6, 2017. The polyvinyl chloride (PVC) bags burst just after the lid of one storage container was opened during the inspection of storage containers for U and Pu in the ventilation hood. At that time, part of nuclear materials in the storage container were scattered all over the room. Five workers in the room were subjected to plutonium contamination, which resulted in internal exposure. In order to restore the Room No.108 of PFRF, the Restoration Activity Team organized in JAEA carried out the decontamination work after the investigation of the contamination level in the room. The team decontaminated the surface of walls, ceiling, gloveboxes and other experimental instruments. Depending on the contamination distribution and installation state of the instruments, suitable decontamination methods were selected. In addition to the manual wiping using wet clothes, the exfoliation method using a strippable paint was applied for constricted areas. As a result, the loose alpha-contamination level fell below the detection limit throughout the room. On the other hand, the fixed contamination was covered with plastic sheets after the decontamination by a strippable paint. We hope that the restoration activity described in this report will provide useful information for the management of decommissioning facilities, especially for facilities treating alpha-radioactive materials such as plutonium.
Shimazaki, Yosuke; Sawahata, Hiroaki; Shinohara, Masanori; Yanagida, Yoshinori; Kawamoto, Taiki; Takada, Shoji
Journal of Nuclear Science and Technology, 54(2), p.260 - 266, 2017/02
Times Cited Count:5 Percentile:41.83(Nuclear Science & Technology)The High-Temperature engineering Test Reactor (HTTR) has three neutron startup sources (NSs) in the reactor core, each of which consists of Cf with 3.7 GBq and is contained in a small capsule, installed in NS holder and subsequently in a control guide block (CR block). The NSs are exchanged at the interval of approximately 7 years. The NS holders are transported from the dealer's hot cell to the reactor facility of HTTR using a transportation container. The loading work of NS holders to the CR blocks is subsequently carried out in the fuel handling machine maintenance pit of HTTR. Technical issues, which are the reduction and prevention of radiation exposure of workers and the exclusion of falling of NS holder, were extracted from the experiences in past two exchange works of NSs to develop a safety handling procedure. Then, a new transportation container special to the NSs of HTTR was developed to solve the technical issues while keeping the cost as low as that for overhaul of conventional container. As the results, the NS handling work using the new transportation container was safely accomplished by developing the new transportation container which can reduce the risks of radiation exposure dose of workers and exclude the falling of NS holder.
Shimazaki, Yosuke; Ono, Masato; Tochio, Daisuke; Takada, Shoji; Sawahata, Hiroaki; Kawamoto, Taiki; Hamamoto, Shimpei; Shinohara, Masanori
Proceedings of International Topical Meeting on Research Reactor Fuel Management and Meeting of the International Group on Reactor Research (RRFM/IGORR 2016) (Internet), p.1034 - 1042, 2016/03
In High Temperature Engineering Test Reactor (HTTR), three neutron holders containing Cf with 3.7 GBq for each are loaded in the graphite blocks and inserted into the reactor core as a neutron startup source which is changed at the interval of approximately ten years. These neutron holders containing the neutron sources are transported from the dealer's hot cell to HTTR using the transportation container. The holders loading to the graphite block are carried out in the fuel handling machine maintenance pit of HTTR. There were two technical issues for the safety handling work of the neutron holder. The one is the radiation exposure caused by significant movement of the container due to an earthquake, because the conventional transportation container was so large (1240 mm, h1855 mm) that it can not be fixed on the top floor of maintenance pit by bolts. The other is the falling of the neutron holder caused by the difficult remote handling work, because the neutron holder capsule was also so long (155 mm, h1285 mm) that it can not be pulled into the adequate working space in the maintenance pit. Therefore, a new and low cost transportation container, which can solve the issues, was developed. To avoid the neutron and ray exposure, smaller transportation container (820mm, h1150 mm) which can be fixed on the top floor of maintenance pit by bolts was developed. In addition, to avoid the falling of the neutron holder, smaller neutron holder capsule (75 mm, h135 mm) with simple handling mechanism which can be treated easily by manipulator was also developed. As the result of development, the neutron holder handling work was safely accomplished. Moreover, a cost reduction for manufacturing was also achieved by simplifying the mechanism of neutron holder capsule and downsizing.
Kohara, Shinji*; Suzuya, Kentaro; Takeuchi, Ken*; Loong, C.-K.*; Grimsditch, M.*; Weber, J. K. R.*; Tangeman, J. A.*; Key, T. S.*
Science, 303(5664), p.1649 - 1652, 2004/03
Times Cited Count:161 Percentile:96.06(Multidisciplinary Sciences)Inorganic glasses normally exhibit a network of interconncted covalent-bonded structural elements that has no long-range order. In silicate glasses the network formers are based on SiO-tetrahedra interconnected via oxygen atoms at the corners. Conventional wisdom then implies that alkaline and alkaline-earth orthosilicate materials cannot be vitrified because they do not contain sufficient network forming SiO to establish the needed interconnectivity. We have studied a bulk magnesium orthosilicate glass obtained by containerless melting-and-cooling. We find that the role of network former is largely taken on by corner- and edge-sharing of highly distorted ionic Mg-O species that adopt 4-, 5- and 6-coordination with oxygen. The results suggest that similar novel glassy phases may be found in the containerless environment of interstellar space.
Nakamura, Hisashi; Nakashima, Mikio
JAERI-Tech 2002-006, 58 Pages, 2002/03
Radiation exposure was estimated on production and utilization of recycled items using dismantling waste by assuming that their usage are restricted to nuclear facilities. The radiation exposure attributed to production of a steel-plate cast iron waste container, a receptacle for slag, and a drum reinforcement was calculated to be in the range of several Sv to several tens of Sv even in recycling contaminated metal waste of which radioactivity concentration of Co-60 is higher than the clearance level by a factor of two figures. It is also elucidated that casting of a multiple casting waste package meets the standards of dose equivalent rate for the transport of a radioactive package and the weight of the package will be able to kept around 20 tons for the convenience of the handling, in case of disposal of metal waste less than 37MBq/g with the steel-plate cast iron waste container. As the results, from the radiological exposure's point of view, it should be possible to use slightly contaminated metal for recycled items in waste management.
Nakamura, Hisashi; Hirabayashi, Takakuni; Akimoto, Jun*; Takahashi, Kenji*; Shindo, Hideaki; Sakurai, Daihachiro*; Almansour, A.*; Okane, Toshimitsu*; Umeda, Takateru*
Materials Science Forum, 329-330, p.441 - 448, 2000/00
no abstracts in English
Nakamura, Hisashi; Hirabayashi, Takakuni; Akimoto, Jun*; Takahashi, Kenji*; Shindo, Hideaki*; Sakurai, Daihachiro*; Almansour, A.*; Okane, Toshimitsu*; Umeda, Takateru*
Proceedings Modeling of Casting & Solidification Processes 4, 1999, p.437 - 445, 1999/09
no abstracts in English
Nakamura, Hisashi; Hirabayashi, Takakuni; Akimoto, Jun*; Takahashi, Kenji*; Shindo, Hideaki*; Sakurai, Daihachiro*; Almansour, A.*; Okane, Toshimitsu*; Umeda, Takateru*
Int. J.Cast Metals Res., 11(5), p.339 - 343, 1999/00
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)no abstracts in English
Nakamura, Hisashi; Hirabayashi, Takakuni
Nihon Kikai Gakkai Dai-6-Kai Doryoku, Enerugi Gijutsu Shimpojiumu '98 Koen Rombunshu, p.371 - 376, 1998/00
no abstracts in English
Ishikura, Shuichi*; Kaminaga, Masanori; ; Hino, Ryutaro; ; ;
Proc. of 14th Meeting of the Int. Collaboration on Advanced Neutron Sources (ICANS-14), 1, p.288 - 300, 1998/00
no abstracts in English
Kaminaga, Masanori; Hino, Ryutaro; ; ; Nakamura, Fumihito*;
Proc. of 14th Meeting of the Int. Collaboration on Advanced Neutron Sources (ICANS-14), 1, p.269 - 277, 1998/00
no abstracts in English
Okoshi, Minoru; Abe, Masayoshi; Yoshimori, Michiro; Sakai, Akihiro
Proc. of Waste Management'98 (CD-ROM), 5 Pages, 1998/00
no abstracts in English
; ; ; ; ; Yanagihara, Satoshi
WM'95,Conf. Proc. (CD-ROM), 0, 10 Pages, 1995/00
no abstracts in English
;
JAERI-M 83-184, 101 Pages, 1983/11
no abstracts in English