Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Matsumoto, Toshinori; Iwasawa, Yuzuru; Sugiyama, Tomoyuki
Proceedings of Reactor core and Containment Cooling Systems, Long-term management and reliability (RCCS 2021) (Internet), 8 Pages, 2021/10
A methodological framework is being developed in JAEA for evaluating debris coolability at ex-vessel during the severe accident (SA) of BWR under the wet cavity strategy. The probability of ex-vessel debris coolability under the wet cavity strategy is analyzed to demonstrate the evaluation approach. Probabilistic distribution of the melt conditions ejected from the RPV was obtained as the result of the iterative analyses with MELCOR code. Five uncertainty parameters relating with the core degradation and transfer process were chosen. Parameter sets were generated by Latin hypercube sampling (LHS). JASMINE code plays the physical model to predict the mass fraction of agglomerated debris and melt pool spreading on the floor. Fifty-nine input parameter set for JASMINE code were generated by LHS again using the probabilistic distribution of melt condition determined from the results of MELCOR analyses. The depth of the water pool was set as 0.5, 1.0 and 2.0 m. The accumulated debris height was compared with the criterion to judge the debris coolability. As the result, the success probability of debris cooling was obtained through the sequence of calculations.
Takeda, Takeshi
JAEA-Data/Code 2020-019, 58 Pages, 2021/01
An experiment denoted as SB-SL-01 was conducted on March 27, 1990 using the Large Scale Test Facility (LSTF) in the Rig of Safety Assessment-IV (ROSA-IV) Program. The ROSA/LSTF experiment SB-SL-01 simulated a main steam line break (MSLB) accident in a pressurized water reactor (PWR). The test assumptions were made such as auxiliary feedwater (AFW) injection into secondary-side of both steam generators (SGs) and coolant injection from high pressure injection (HPI) system of emergency core cooling system into cold legs in both loops. The MSLB led to a fast depressurization of broken SG, which caused a decrease in the broken SG secondary-side wide-range liquid level. The broken SG secondary-side wide-range liquid level recovered because of the AFW injection into the broken SG secondary-side. The primary pressure temporarily decreased a little just after the MSLB, and increased up to 16.1 MPa following the closure of the SG main steam isolation valves. Coolant was manually injected from the HPI system into cold legs in both loops a few minutes after the primary pressure reduced to below 10 MPa. The primary pressure raised due to the HPI coolant injection, but was kept at less than 16.2 MPa by fully opening a power-operated relief valve of pressurizer. The core was filled with subcooled liquid through the experiment. Thermal stratification was seen in intact loop cold leg during the HPI coolant injection owing to the flow stagnation. On the other hand, significant natural circulation prevailed in broken loop. When the continuous core cooling was ensured by the successive coolant injection from the HPI system, the experiment was terminated. The experimental data obtained would be useful to consider recovery actions and procedures in the multiple fault accident with the MSLB of PWR. This report summarizes the test procedures, conditions, and major observations in the ROSA/LSTF experiment SB-SL-01.
Narukawa, Takafumi; Amaya, Masaki
Journal of Nuclear Science and Technology, 57(7), p.782 - 791, 2020/07
Times Cited Count:3 Percentile:47.69(Nuclear Science & Technology)Ishitsuka, Etsuo; Matsunaka, Kazuaki*; Ishida, Hiroki*; Ho, H. Q.; Ishii, Toshiaki; Hamamoto, Shimpei; Takamatsu, Kuniyoshi; Kenzhina, I.*; Chikhray, Y.*; Kondo, Atsushi*; et al.
JAEA-Technology 2019-008, 12 Pages, 2019/07
As a summer holiday practical training 2018, the feasibility study for nuclear design of a nuclear battery using HTTR core was carried out. As a result, it is become clear that the continuous operations for about 30 years at 2 MW, about 25 years at 3 MW, about 18 years at 4 MW, about 15 years at 5 MW are possible. As an image of thermal design, the image of the nuclear battery consisting a cooling system with natural convection and a power generation system with no moving equipment is proposed. Further feasibility study to confirm the feasibility of nuclear battery will be carried out in training of next fiscal year.
Takeda, Takeshi
JAEA-Data/Code 2018-004, 64 Pages, 2018/03
Experiment SB-SG-10 was conducted on November 17, 1992 using LSTF. Experiment simulated recovery actions from multiple steam generator (SG) tube rupture accident in PWR. Primary pressure was kept higher than broken SG secondary-side pressure due to coolant injection from high pressure injection (HPI) system into cold and hot legs even after start of full opening of intact SG relief valve (RV). Full opening of power-operated relief valve (PORV) in pressurizer (PZR) resulted in pressure equalization between primary and broken SG systems as well as PZR liquid level recovery. Broken SG RV opened once after start of intact SG RV full opening. Core was filled with saturated or subcooled liquid through experiment. Significant natural circulation prevailed in intact loop after start of intact SG RV full opening. Significant thermal stratification appeared in hot legs especially during time period of HPI coolant injection into hot legs.
Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Takada, Shoji
Journal of Nuclear Engineering and Radiation Science, 3(4), p.041013_1 - 041013_8, 2017/10
In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15
C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.
Takeda, Takeshi
JAEA-Data/Code 2016-004, 59 Pages, 2016/07
The TR-LF-07 test simulated a loss-of-feedwater transient in a PWR. A SI signal was generated when steam generator (SG) secondary-side collapsed liquid level decreased to 3 m. Primary depressurization was initiated by fully opening a power-operated relief valve (PORV) of pressurizer (PZR) 30 min after the SI signal. High pressure injection (HPI) system was started in loop with PZR 12 s after the SI signal, while it was initiated in loop without PZR when the primary pressure decreased to 10.7 MPa. The primary and SG secondary pressures were kept almost constant because of cycle opening of the PZR PORV and SG relief valves. The PZR liquid level began to drop steeply following the PORV full opening, which caused liquid level formation at the hot leg. The primary pressure became lower than the SG secondary pressure, which resulted in the actuation of accumulator (ACC) system in both loops. The primary feed-and-bleed operation was effective to core cooling because of no core uncovery.
Fujiwara, Yusuke; Nemoto, Takahiro; Tochio, Daisuke; Shinohara, Masanori; Ono, Masato; Hamamoto, Shimpei; Iigaki, Kazuhiko; Takada, Shoji
Proceedings of 24th International Conference on Nuclear Engineering (ICONE-24) (DVD-ROM), 7 Pages, 2016/06
In HTTR, the test was carried out at the reactor thermal power of 9 MW under the condition that one cooling line of VCS was stopped to simulate the partial loss of cooling function from the surface of RPV in addition to the loss of forced cooling flow in the core simulation. The test results showed that temperature change of the core internal structures and the biological shielding concrete was slow during the test. Temperature of RPV decreased several degrees during the test. The temperature decrease of biological shielding made of concrete was within 1C. The numerical result simulating the detail configuration of the cooling tubes of VCS showed that the temperature rise of cooling tubes of VCS was about 15 degree C, which is sufficiently small, which did not significantly affect the temperature of biological shielding concrete. As the results, it was confirmed that the cooling ability of VCS can be kept in case that one cooling line of VCS is lost.
Fukaya, Yuji
Annals of Nuclear Energy, 81, p.301 - 305, 2015/07
Times Cited Count:1 Percentile:10.43(Nuclear Science & Technology)Development of a simple method to incorporate the out-of-core cooling effect on the thorium conversion in multi-pass fueled reactors and investigation on characteristics of the effect have been performed. For multi-pass fueled reactors, such as Molten Salt Breeder Reactor (MSBR) and Pebble-Bed Modular Reactor (PBMR), fuel moves in the core and exits from the core. The nuclides decay also out of the core, and it should be also considered if it is important for core characteristics. In the present study, Pa is considered to evaluate the thorium conversion accurately. To take the effect into account, in the present study, an effective decay constant is proposed to make equilibrium concentration of
Pa without out-of-core cooling equal to that of out-of-core cooling. With the effective decay constant, the out-of-core cooling effect can be incorporated even with the code system using macroscopic cross sections generated by cell burn-up calculations without any code modification. In addition, the characteristic of out-of-core cooling effect for the thorium conversion is evaluated for thorium fueled reactors of MSBR and PBMR. It is concluded that the out-of-core cooling effect is suitable for MSBR to enhance thorium conversion because of the fast flow rate of fuel salt. On the other hand, the effect is not important and not realistic to employ for PBMR because the in-core residence time of approximately 100 days is longer than the half-life of
Pa of 27.0 days, and the effect cannot improve the conversion ratio drastically.
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
Journal of Nuclear Science and Technology, 43(1), p.55 - 64, 2006/01
Times Cited Count:10 Percentile:58.18(Nuclear Science & Technology)Effects of non-condensable gas from the accumulator tanks on secondary depressurization, as one of accident management (AM) measures in case of high pressure injection system failure, are studied at the ROSA-V/LSTF experiments simulating a ten instrument-tube break LOCA at the PWR vessel bottom. In an experiment with no gas inflow, the secondary depressurization at -55 K/h initiated by SI signal with 10 minutes delay succeeded in the LPI actuation. On the other hand, the gas inflow in another experiment degraded the primary depressurization and resulted in core uncovery before the LPI start. The third experiment with rapid secondary depressurization and continuous auxiliary feedwater supply, however, showed a possibility of long-term core cooling by the LPI actuation. RELAP5/MOD3 code analyses well predicted these experiment results and clarified that condensation heat transfer was largely degraded by the gas in the U-tubes. In addition, a primary pressure - coolant mass map was found to be useful for indication of key plant parameters of AM measures.
Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo
JAERI-Research 2005-014, 170 Pages, 2005/06
A small break LOCA (SBLOCA) experiment was conducted at the LSTF of ROSA-V program to study effects of accident management (AM) on core cooling, which is important in case of high pressure injection (HPI) system failure during an SBLOCA at a PWR. The experiment, SB-PV-03, simulated ten instrument-tube break LOCA at the PWR vessel bottom equivalent to 0.2% cold leg break, total HPI failure, non-condensable gas inflow from accumulator injection system (AIS) and AM actions on secondary depressurization at -55 K/h and auxiliary feedwater (AFW) supply for 30 minutes. It was clarified that the AM actions were effective on primary depressurization until AIS injection end at 1.6 MPa, but thereafter became less effective by the gas inflow, resulting in low pressure injection (LPI) delay and whole core heatup under continuous water discharge at the break. The report describes these phenomena including core heatup related with primary coolant mass and AM actions, primary-to-secondary heat transfer analysis and estimation of gas in the primary loops.
Takeda, Takeshi; Tachibana, Yukio; Iyoku, Tatsuo; Takenaka, Satsuki*
Annals of Nuclear Energy, 30(7), p.811 - 830, 2003/05
Times Cited Count:1 Percentile:11.08(Nuclear Science & Technology)no abstracts in English
Takeda, Takeshi; Nakagawa, Shigeaki; Homma, Fumitaka*; Takada, Eiji*; Fujimoto, Nozomu
Journal of Nuclear Science and Technology, 39(9), p.986 - 995, 2002/09
Times Cited Count:4 Percentile:29.81(Nuclear Science & Technology)no abstracts in English
Sugiyama, Kenichiro*; Iguchi, Kentaro*
JAERI-Tech 2002-010, 67 Pages, 2002/03
no abstracts in English
Iguchi, Tadashi; Iwaki, Chikako*; Anoda, Yoshinari
JAERI-Research 2001-060, 91 Pages, 2002/02
no abstracts in English
Suzuki, Mitsuhiro; Anoda, Yoshinari
JAERI-Tech 2000-016, p.173 - 0, 2000/03
no abstracts in English
Ioka, Ikuo; Inagaki, Yoshiyuki; Suzuki, Kunihiro; Kunitomi, Kazuhiko;
Nihon Genshiryoku Gakkai-Shi, 37(3), p.217 - 227, 1995/00
Times Cited Count:1 Percentile:17.79(Nuclear Science & Technology)no abstracts in English
Kukita, Yutaka; R.R.Schultz*; Nakamura, Hideo; Katayama, Jiro*
Nucl. Saf., 34(1), p.33 - 48, 1993/01
no abstracts in English
Suzuki, Mitsuhiro
Proc. of the 2nd ASME/JSME Nuclear Engineering, p.63 - 68, 1993/00
no abstracts in English
Murao, Yoshio; Araya, Fumimasa; Iwamura, Takamichi; Watanabe, Hironori
Transactions of the American Nuclear Society, 69, p.539 - 540, 1993/00
no abstracts in English