検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 107 件中 1件目~20件目を表示

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

発表言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

隠匿された核物質の現場検知システムの開発; 核セキュリティ強化に向けた取組

田辺 鴻典*; 米田 政夫; 藤 暢輔; 北村 康則*; 三澤 毅*

日本原子力学会誌ATOMO$$Sigma$$, 67(3), p.198 - 202, 2025/03

鉛等で隠匿された$$^{235}$$Uに対する非破壊測定技術の開発は、長年、核セキュリティ上の最重要課題と言われてきたが、依然として現場レベルでの検知は困難な状況にある。我々は$$^{252}$$Cf回転照射法と呼ばれる新たな核物質非破壊測定手法を提案し、回転照射装置と水チェレンコフ中性子検出器で構成される運搬性の高い現場検知システムを開発、本システムによる核物質検知を実証した。本報では、開発したシステムを概説するとともに今後の展望について解説する。

論文

Monte Carlo and experimental assessment of the optimal geometry of the source and collimator for a table-top NRTA system for small nuclear material measurement

Guembou Shouop, C. J.; 土屋 晴文

Nuclear Instruments and Methods in Physics Research A, 1072, p.170189_1 - 170189_14, 2025/03

 被引用回数:1 パーセンタイル:0.00(Instruments & Instrumentation)

The development of a compact mobile neutron resonance transmission analysis (NRTA) instrument is in progress for measuring nuclear materials in the field of nuclear nonproliferation and nuclear security. The present paper focuses on research/developments on designing the source, moderators and shielding for the table-top NRTA system utilising a $$^{252}$$Cf spontaneous neutron. To this end, three source configurations were assessed using Monte Carlo (MC) simulations-based Particle and Heavy Ion Transport code System (PHITS) by evaluating each configuration's neutron/gamma fluxes. Experimental validation of the MC simulation was conducted using an EJ270 plastic scintillation detector, a $$10^4$$ Bq $$^{252}$$Cf source, and a thin In sample. The Monte Carlo simulations and experimental results confirmed that an optimal configuration for the table-top NRTA system involves sandwiching the $$^{252}$$Cf source between the polyethylene (PE) moderator (PE closer to the detector) and the W reflector. Furthermore, the MC simulations showed that resonance dips from NatU and Pu (energy lines of 1.06 and 2.60 eV of $$^{240}$$Pu and 0.30 eV of $$^{239}$$Pu) can be observed in the Time-of-Flight spectra obtained using the table-top NRTA system with an appropriate collimator for a small pellet sample. The preliminary experimental results with a 2 mm thick In sample displayed the 1.46 eV resonance dip of $$^{115}$$In, showing that the table-top NRTA system using a $$^{252}$$Cf neutron source can measure TOF spectra and observe dips caused by low energy resonances in a sample. These findings suggest the system is well-suited for measuring small pellet samples of Pu and U.

論文

Performance study of a new LiCAF:Ce detector developed for high-efficient neutron detection in intense $$gamma$$-ray fields

冠城 雅晃; 鎌田 圭*; 石井 隼也*; 松本 哲郎*; 真鍋 征也*; 増田 明彦*; 原野 英樹*; 加藤 昌弘*; 島添 健次*

Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11

 被引用回数:0 パーセンタイル:0.00(Instruments & Instrumentation)

A new LiCAF:Ce detector with an ultra-thick (99 $$mu$$m) crystal and optimized readout was developed. The LiCAF:Ce and KG2 detectors were used to detect a sealed Cf-252 neutron source (neutron emission rate of ~$$4.11 times 10^5 s^{-1}$$) using a 5 cm thick high-density polyethylene (HDPE) block located at the front of the detector. At the air kerma rates at the front surface of the HDPE block ($$it{D}_s$$) of up to 1.07 Gy/h, the effective neutron count rate ($$n_{eff}$$) for the LiCAF:Ce detector was the same within margins of errors, but it decreased by 5.7 $$pm$$ 0.8% at 2.97 Gy/h. In contrast, for the KG2 detector, with $$it{D}_s$$ increased up to 1.07 Gy/h, $$n_{eff}$$ for KG2 increased up to 20 $$pm$$ 1.0 % at 1.07 Gy/h. Then, $$n_{eff}$$ decreased by 20 $$pm$$ 1.0% at 2.97 Gy/h. Therefore, the LiCAF:Ce detector exhibited a smaller influence on neutron count rates by $$gamma$$-rays compared to the KG2 detector because of the faster decay time and optimization of digital pulse processing.

論文

Compact and transportable system for detecting lead-shielded highly enriched uranium using $$^{252}$$Cf rotation method with a water Cherenkov neutron detector

田辺 鴻典*; 米田 政夫; 藤 暢輔; 北村 康則*; 三澤 毅*; 土屋 兼一*; 相楽 洋*

Scientific Reports (Internet), 14, p.18828_1 - 18828_10, 2024/08

 被引用回数:0 パーセンタイル:0.00(Multidisciplinary Sciences)

The global challenge of on-site detection of highly enriched uranium (HEU), a substance with considerable potential for unauthorized use in nuclear security, is a critical concern. Traditional passive nondestructive assay (NDA) techniques, such as gamma-ray spectroscopy with high-purity germanium detectors, face significant challenges in detecting HEU when it is shielded by heavy metals. Addressing this critical security need, we introduce an on-site detection method for lead-shielded HEU employing a transportable NDA system that utilizes the $$^{252}$$Cf rotation method with a water Cherenkov neutron detector. This cost-effective NDA system is capable of detecting 4.17 g of $$^{235}$$U within a 12 min measurement period using a $$^{252}$$Cf source of 3.7 MBq. Integrating this system into border control measures can enhance the prevention of HEU proliferation significantly and offer robust deterrence against nuclear terrorism.

論文

Implementation of a Mini-slab-based neutron detector system to increase the efficiency of safeguards verification of hold-up at MOX fuel fabrication facilities in Japan

Kyffin, J.*; Dia, A.*; Nkosi, G.*; Nizhnik, V.*; 林 昭彦; 長谷 竹晃

Proceedings of 65th Annual Meeting of the Institute of Nuclear Materials Management (Internet), 8 Pages, 2024/07

In collaboration with the Japan Safeguards Office, the Nuclear Material Control Centre, and the JAEA, the IAEA Department of Safeguards is implementing a new neutron detector system for the verification of plutonium hold-up in process gloveboxes at MOX fuel fabrication facilities in Japan. The previous verification technique utilised the so-called Super Glove Box Assay System (SBAS), which, while capable of detecting partial defects, is a heavy and bulky detector system that requires both significant operator support for safe assembly and positioning, and long measurement times. The recent development of a detector system based on two Plutonium Neutron Coincidence Collar (PNCL) miniature neutron slabs provides the capability of detecting gross defects with semi-quantitative plutonium mass measurement, and is sufficient in respect to inspections for timeliness purposes. For regular use, the Mini-slab detector offers several advantages, including improved safety, reduced operator support requirements and shorter measurement times. The Mini-slab detector satisfies the required verification role with a quarter of the inspector-days compared to SBAS. Furthermore, it has the capability to measure in tighter spaces, with the need for such use expected to grow as parts of these facilities begin decommissioning.

報告書

建屋応答モニタリングと損傷イメージング技術を活用したハイブリッド型の原子炉建屋長期健全性評価法の開発研究(委託研究); 令和4年度英知を結集した原子力科学技術・人材育成推進事業

廃炉環境国際共同研究センター; 東北大学*

JAEA-Review 2023-048, 151 Pages, 2024/05

JAEA-Review-2023-048.pdf:8.48MB

日本原子力研究開発機構(JAEA)廃炉環境国際共同研究センター(CLADS)では、英知を結集した原子力科学技術・人材育成推進事業を実施している。本事業は、東京電力ホールディングス福島第一原子力発電所の廃炉等をはじめとした原子力分野の課題解決に貢献するため、国内外の英知を結集し、様々な分野の知見や経験を、従前の機関や分野の壁を越えて緊密に融合・連携させた基礎的・基盤的研究及び人材育成を推進することを目的としている。本研究は、令和3年度に採択された研究課題のうち、「建屋応答モニタリングと損傷イメージング技術を活用したハイブリッド型の原子炉建屋長期健全性評価法の開発研究」の令和4年度分の研究成果について取りまとめたものである。

論文

Nondestructive determination of isotopic abundance using multi-energy nuclear resonance fluorescence driven by laser Compton scattering source

Omer, M.; 静間 俊行*; 羽島 良一*; 小泉 光生

Journal of Applied Physics, 135(18), p.184903_1 - 184903_10, 2024/05

 被引用回数:0 パーセンタイル:0.00(Physics, Applied)

We report on the findings of a quantitative nondestructive analysis of the natural isotopic abundances of hafnium and tungsten elements using nuclear resonance fluorescence. Commercial samples of hafnium and tungsten were irradiated to six quasi-monochromatic $$gamma$$-ray beams generated by laser Compton scattering in the energy range of 2.4-3.2 MeV. Multiple nuclei were simultaneously excited at each of the six $$gamma$$-ray beam energies. A high-purity germanium detector array detected deexcitations of the nuclei. In total, $$51$$ transitions were unprecedentedly employed to estimate the isotopic abundances of heavy elements nondestructively. The estimated abundances of three hafnium isotopes and three tungsten isotopes are consistent with standard known natural abundances within the experimental uncertainties. The deviation from the standard values ranges from 0.18% to 1.36%. This work is a contribution of the Japan Atomic Energy Agency (JAEA) to the International Atomic Energy Agency (IAEA) under the agreement of the coordinated research program (CRP), J02015 (Facilitation of Safe and Secure Trade Using Nuclear Detection Technology - Detection of RN and Other Contraband). This work was a part of a study of the nuclear resonance fluorescence aiming at nuclear security and safeguards applications, being supported by the subsidiary for "promotion of strengthening nuclear security or the like" of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

論文

Comparing DGSMC, FIER, and FISPACT simulations to experimental delayed gamma-ray spectra for nuclear safeguards development

Rodriguez, D.; Rossi, F.; 高橋 時音

IEEE Transactions on Nuclear Science, 71(3), p.255 - 268, 2024/03

 被引用回数:0 パーセンタイル:0.00(Engineering, Electrical & Electronic)

Under the MEXT subsidy to improve nuclear security related capabilities, we are developing the delayed gamma-ray spectroscopic analysis technique. One goal is to develop an inverse Monte Carlo analysis method using spectra from simulations of the interrogation instrument for comparison to the actual measured spectra. This work presents the validity of the Monte Carlo foundation of the analysis compared to experimental results and other simulation codes.

論文

燃料デブリ性状把握・推定技術の開発状況と今後の課題,5; 燃料デブリと放射性廃棄物の仕分けのための非破壊計測技術の開発状況

鎌田 正輝*; 吉田 拓真*; 杉田 宰*; 奥村 啓介

日本原子力学会誌ATOMO$$Sigma$$, 66(2), p.83 - 86, 2024/02

福島第一原子力発電所から取り出された物体の核燃料物質量を計測し、核燃料物質量に基づいて燃料デブリと放射性廃棄物に仕分けることができれば、取り出しから保管までの作業および保管施設の合理化につながる。これまで、廃炉・汚染水対策事業において、2019年度に燃料デブリと放射性廃棄物の仕分けに適用できる可能性がある非破壊計測技術を調査し、2020$$sim$$2021年度に候補技術における計測誤差因子の影響を評価した。2022年度以降も引き続き、燃料デブリの取り出し規模の更なる拡大に向けて、燃料デブリと放射性廃棄物の仕分けのための非破壊計測技術の開発を進めているところである。

論文

Development of an integrated non-destructive analysis system, Active-N

土屋 晴文; 藤 暢輔; 大図 章; 古高 和禎; 北谷 文人; 前田 亮; 米田 政夫

Journal of Nuclear Science and Technology, 60(11), p.1301 - 1312, 2023/11

 被引用回数:3 パーセンタイル:62.75(Nuclear Science & Technology)

An integrated active neutron non-destructive analysis (NDA) system, Active-N, was developed to gain knowledge of active neutron NDA techniques that are applicable to measurements of nuclear materials in highly radioactive nuclear fuels. Active-N, equipped with a D-T neutron generator, combines three complementary active neutron NDA techniques: Differential Die-away Analysis (DDA), Prompt Gamma-ray Analysis (PGA), and Neutron Resonance Transmission Analysis (NRTA). In this paper, we provide an overview of Active-N and then demonstrate that the compact NRTA system in Active-N can quantify nuclear materials. Monte Carlo simulations were conducted to determine the design of the compact NRTA system including a moderator, flight tubes, and a detector shield. To investigate how accurately the compact NRTA system determines areal densities in a sample, measurements were performed with a Pu pellet-type sample as well as metallic plate samples of In and Ag. The experimental areal densities of $$^{240}$$Pu, $$^{115}$$In and $$^{109}$$Ag were consistent with those calculated for the individual nuclei. These results show that it is feasible to develop a compact NRTA system capable of determining the contents of nuclear materials in nuclear fuels. This research was implemented under the subsidy for nuclear security promotion of MEXT.

論文

Development of a DDA+PGA-combined non-destructive active interrogation system in "Active-N"

古高 和禎; 大図 章; 藤 暢輔

Nuclear Engineering and Technology, 55(11), p.4002 - 4018, 2023/11

 被引用回数:1 パーセンタイル:25.62(Nuclear Science & Technology)

An integrated neutron interrogation system has been developed for non-destructive assay of highly radioactive special nuclear materials, to accumulate knowledge of the method through developing and using it. The system combines a differential die-away (DDA) measurement system for the quantification of nuclear materials and a prompt gamma-ray analysis (PGA) system for the detection of neutron poisons which disturb the DDA measurements; a common D-T neutron generator is used. A special care has been taken for the selection of materials to reduce the background gamma rays produced by the interrogation neutrons. A series of measurements were performed to test the basic performance of the system. The results show that the DDA system can quantify plutonium of as small as 20~mg and it is not affected by intense neutron background up to 4.2~TBq and gamma ray of 2.2~TBq. As a result of the designing of the combined system as a whole, the gamma-ray background counting rate at the PGA detector was reduced down to $$3.9times10^{3}$$ s$$^{-1}$$ even with the use of the D-T neutron generator. The test measurements show that the PGA system is capable of detecting less than 1~g of boron compound and about 100~g of gadolinium compound in~30 min. This research was implemented under the subsidy for nuclear security promotion of MEXT.

論文

Neutron resonance fission neutron analysis for nondestructive fissile material assay

弘中 浩太; Lee, J.; 小泉 光生; 伊藤 史哲*; 堀 順一*; 寺田 和司*; 佐野 忠史*

Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09

 被引用回数:4 パーセンタイル:62.75(Instruments & Instrumentation)

We propose neutron resonance fission neutron analysis (NRFNA), an active nondestructive assay (NDA) technique, to improve the capability to identify and quantify a small amount of fissile material in a sample. NRFNA uses pulsed neutrons to induce fission reactions in the sample. Fission neutrons are detected by a neutron-gamma pulse shape discrimination (PSD) scintillation detector with time-of-flight (TOF) technique. The obtained nuclide-specific resonance peaks in the neutron energy spectrum provide information to identify and quantify a fissile material in the sample. The possibility of using PSD for NRFNA was confirmed through a test experiment using a natural uranium sample. We successfully observed the resonance peaks from $$^{235}$$U(n,f) reaction and showed that NRFNA would be useful for measuring a small amount of fissile material in a sample.

論文

JAEA-JRC collaborative development of delayed gamma-ray spectroscopy for nuclear safeguards nuclear material accountancy

Rodriguez, D.; Abbas, K.*; Bertolotti, D.*; Bonaldi, C.*; Fontana, C.*; 藤本 正己*; Geerts, W.*; 小泉 光生; Macias, M.*; Nonneman, S.*; et al.

Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 8 Pages, 2023/05

Under the MEXT subsidy to improve nuclear security related activities, we present the overview of the JAEA-JRC delayed gamma-ray spectroscopic analysis project. We describe past results, recent joint experiments, and the final goals for this project.

論文

Design and characterization of the fission signature assay instrument for nuclear safeguards

Rossi, F.; 小泉 光生; Rodriguez, D.; 高橋 時音

Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 5 Pages, 2023/05

Since 2015, the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency has been working on the development of the Delayed Gamma-ray Spectroscopy non-destructive assay technique for the quantification of fissile-nuclide content in mixed nuclear materials. Thanks to the efforts and lessons learned from past experiments, the ISCN has successfully designed and fabricated a final integrated instrument. The instrument is composed of a moderator and dose shield where different neutron sources, like Cf-252 and neutron generators, can be inserted to irradiate the sample. Within the moderator, a series of neutron detectors are installed for perform prompt neutron analysis and continuous monitoring of the neutron source emission. Thanks to an innovative transfer system, the sample is then moved to the gamma-ray detector in less than 1.5s providing a fast and reliable movement while being safe from possible contamination. In this work, we will describe the design details of this new instrument. This work is supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) under the subsidy for the "promotion for strengthening nuclear security and the like".

論文

Accuracy of measuring rebar strain in concrete using a diffractometer for residual stress analysis

安江 歩夢*; 川上 真由*; 小林 謙祐*; Kim, J.*; 宮津 裕次*; 西尾 悠平*; 向井 智久*; 諸岡 聡; 兼松 学*

Quantum Beam Science (Internet), 7(2), p.15_1 - 15_14, 2023/05

Neutron diffraction is a noncontact method that can measure the rebar strain inside concrete. In this method, rebar strain and stress are calculated using the diffraction profile of neutrons irradiated during a specific time period. In general, measurement accuracy improves with the length of the measurement time. However, in previous studies, the measurement time was determined empirically, which makes the accuracy and reliability of the measurement results unclear. In this study, the relationship between the measurement time and the measurement standard deviation was examined for reinforced concrete specimens under different conditions. The aim was to clarify the accuracy of the measurement of rebar stress using the neutron diffraction method. It was found that if the optical setup of the neutron diffractometer and the conditions of the specimen are the same, there is a unique relationship between the diffraction intensity and the rebar stress standard deviation. Furthermore, using this unique relationship, this paper proposes a method for determining the measurement time from the allowable accuracy of the rebar stress, which ensures the accuracy of the neutron diffraction method.

論文

Applicability of differential die-away self-interrogation technique for quantification of spontaneous fission nuclides for fuel debris at Fukushima Daiichi Nuclear Power Plants

長谷 竹晃; 相樂 洋*; 小菅 義広*; 能見 貴佳; 奥村 啓介

Journal of Nuclear Science and Technology, 60(4), p.460 - 472, 2023/04

 被引用回数:1 パーセンタイル:14.76(Nuclear Science & Technology)

This paper provides an overview of the applicability of the Differential Die-Away Self-Interrogation (DDSI) technique for quantification of spontaneous fissile nuclides in fuel debris at the Fukushima Daiichi Nuclear Power Plants. In this research, massive fuel debris stored in a canister was evaluated, and the void space of the canister was assumed to be filled with water for wet storage and air for dry storage. The composition of fuel debris was estimated based on elements such as the inventory in the reactor core and operation history. The simulation results show that for wet storage, the DDSI technique can properly evaluate the neutron leakage multiplication and quantify spontaneous fissile nuclides with a total measurement uncertainty (TMU) of approximately 8%. For dry storage, the known-alpha technique, which was previously established, can be applied to quantify spontaneous fissile nuclides with a TMU of approximately 4%. In both cases, the largest uncertainty factor is the variation in water content in the canister. In the case of wet storage, the uncertainty could be significantly increased in cases where the fuel debris is extremely unevenly distributed in the canister.

報告書

建屋応答モニタリングと損傷イメージング技術を活用したハイブリッド型の原子炉建屋長期健全性評価法の開発研究(委託研究); 令和3年度英知を結集した原子力科学技術・人材育成推進事業

廃炉環境国際共同研究センター; 東北大学*

JAEA-Review 2022-071, 123 Pages, 2023/03

JAEA-Review-2022-071.pdf:6.07MB

日本原子力研究開発機構(JAEA)廃炉環境国際共同研究センター(CLADS)では、令和3年度英知を結集した原子力科学技術・人材育成推進事業(以下、「本事業」という)を実施している。本事業は、東京電力ホールディングス株式会社福島第一原子力発電所の廃炉等を始めとした原子力分野の課題解決に貢献するため、国内外の英知を結集し、様々な分野の知見や経験を、従前の機関や分野の壁を越えて緊密に融合・連携させた基礎的・基盤的研究及び人材育成を推進することを目的としている。平成30年度の新規採択課題から実施主体を文部科学省からJAEAに移行することで、JAEAとアカデミアとの連携を強化し、廃炉に資する中長期的な研究開発・人材育成をより安定的かつ継続的に実施する体制を構築した。本研究は、研究課題のうち、令和3年度に採択された「建屋応答モニタリングと損傷イメージング技術を活用したハイブリッド型の原子炉建屋長期健全性評価法の開発研究」の令和3年度の研究成果について取りまとめたものである。本研究は、高放射線量率と高汚染のため、現場への接近性が極端に限られるような事故を経験した原子炉建屋の長期構造健全性の見通しを得るために必要な評価手法を開発しようとするものである。3ヵ年計画の初年度である令和3年度は、(1)地震等の外乱応答モニタリングによる建屋の振動性状・応答評価法の開発、(2)電磁波を用いたコンクリート構造物の損傷検知技術の開発、(3)損傷検知情報に基づくコンクリート材料・構造物の性能評価法の開発、(4)総合的な建屋安全性評価手法の開発と長期保全計画の提案、(5)研究推進の研究項目について具体的な研究方法を明確にして研究の方向付けを行うとともに、必要な諸準備を行い、一部の試験や活動を行った。

論文

New design of a delayed gamma-ray spectrometer for safeguards verification of small mixed nuclear material samples

Rossi, F.; 小泉 光生; Rodriguez, D.; 高橋 時音

Proceedings of 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (2022 IEEE NSS MIC RTSD) (Internet), 2 Pages, 2022/11

To address challenges in the safeguard field for the verification of mixed nuclear materials, the Japan Atomic Energy Agency is developing the Delayed Gamma-ray Spectroscopy non-destructive assay technique. Minimally, this technique requires an external source to induce fission in the sample and a gamma-ray detector to collect the high-energy gamma rays emitted from the decay of fission products. In the development of this technique, deuterium-deuterium neutron generators will replace $$^{252}$$Cf as the external neutron source. The emitted neutrons are then slowed down in the thermal energy range to enhance the delayed gamma-ray signature coming from the fissile nuclides in the sample. The fission product delayed gamma rays with energy above 3 MeV are then collected with a detector located away from the irradiation position to avoid neutron damage. The collected spectrum is then analyzed, and the peak ratios are used to verify the initial composition of the fissile nuclides. Further, source monitors are required to normalize for the source emission to estimate the fissile mass of the sample. In this work, we will first describe our latest development in designing a delayed gamma-ray spectrometer for small mixed nuclear material samples. We will present latest results obtained from activation experiment and neutron detector characterization. Finally, we will present the usage of a new transfer system designed, fabricated, and tested at the Japan Atomic Energy Agency laboratories. This work is supported by MEXT under the subsidy for the "promotion for strengthening nuclear security and the like". This work was done under the agreement between JAEA and EURATOM in the field of nuclear material safeguards research and development.

論文

Development of delayed gamma-ray spectroscopy for nuclear safeguards, 2; Forward to a practical DGS instrument

Rossi, F.; 小泉 光生; Rodriguez, D.; 高橋 時音

Proceedings of INMM 63rd Annual Meeting (Internet), 5 Pages, 2022/07

With the initial goal of fissile-nuclide content quantification in small samples containing uranium and plutonium, the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security of the Japan Atomic Energy Agency is developing the Delayed Gamma-ray Spectroscopy non-destructive assay technique. For this, while in the past years several experiments were conducted to prove the feasibility of the technique, a new instrument was designed considering the previous lessons learned. It includes a modular insertion for different neutron sources, like radioisotopes or neutron generators; a gamma-ray detector with improved data acquisition system allowing for real-time dead-time correction; and a full new mechanism for the sample transfer between irradiation and measurement. Together with this, neutron detectors are integrated to supplement the DGS mass analysis and monitor the source intensity. In this work, we will describe the new instrument and the preliminary results obtained from instrument characterization compared to previous experiments. This work is supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) under the subsidy for the "promotion for strengthening nuclear security and the like". This work was done under the agreement between JAEA and EURATOM in the field of nuclear material safeguards research and development.

論文

A Multi-technique tomography-based approach for non-invasive characterization of additive manufacturing components in view of vacuum/UHV applications; Preliminary results

Grazzi, F.*; Cialdai, C.*; Manetti, M.*; Massi, M.*; Morigi, M. P.*; Bettuzzi, M.*; Brancaccio, R.*; Albertin, F.*; 篠原 武尚; 甲斐 哲也; et al.

Rendiconti Lincei. Scienze Fisiche e Naturali, 32(3), p.463 - 477, 2021/09

 被引用回数:6 パーセンタイル:29.35(Multidisciplinary Sciences)

In this paper, we have studied an additively manufactured metallic component, intended for ultra-high vacuum application, the exit-snout of the MACHINA transportable proton accelerator beam-line. Metal additive manufacturing components can exhibit heterogeneous and anisotropic microstructures. Two non-destructive imaging techniques, X-ray computed tomography and Neutron Tomography, were employed to examine its microstructure. They unveiled the presence of porosity and channels, the size and composition of grains and intergranular precipitates, and the general behavior of the spatial distribution of the solidification lines. While X-ray computed tomography evidenced qualitative details about the surface roughness and internal defects, neutron tomography showed excellent ability in imaging the spatial density distribution within the component. The anisotropy of the density was attributed to the material building orientation during the 3D printing process. Density variations suggest the possibility of defect pathways, which could affect high vacuum performances. In addition, these results highlight the importance of considering building orientation in the design for additive manufacturing for UHV applications.

107 件中 1件目~20件目を表示