Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 535

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Characterization of neutrons emitted by an expected small amount of fuel debris in a trial retrieval from Fukushima Daiichi Nuclear Power Station

Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*

Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

JAEA Reports

Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3 (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2024-010, 112 Pages, 2024/08

JAEA-Review-2024-010.pdf:6.49MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2022. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.

Journal Articles

Measurement of the prompt fission $$gamma$$-rays from slow neutron-induced fission of $$^{235}$$U with STEFF

Wright, T.*; Harada, Hideo; Kimura, Atsushi; 121 of others*

European Physical Journal A, 60(3), p.70_1 - 70_11, 2024/03

 Times Cited Count:0 Percentile:0.00(Physics, Nuclear)

Journal Articles

Preliminary study of the criticality monitoring method based on the simulation for the activity ratio of short half-life noble-gas fission products from fuel debris

Riyana, E. S.; Okumura, Keisuke; Sakamoto, Masahiro; Matsumura, Taichi; Terashima, Kenichi; Kanno, Ikuo

Journal of Nuclear Science and Technology, 61(2), p.269 - 276, 2024/02

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

Journal Articles

Thermal conductivity measurement of uranium-plutonium mixed oxide doped with Nd/Sm as simulated fission products

Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01

 Times Cited Count:6 Percentile:77.44(Materials Science, Multidisciplinary)

The thermal conductivities of near-stoichiometric (U,Pu,Am)O$$_{2}$$ doped with Nd$$_{2}$$O$$_{3}$$/Sm$$_{2}$$O$$_{3}$$, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)$$^{-1}$$. The dependences of the coefficients A and B on the Nd/Sm content (C$$_{Nd}$$ and C$$_{Sm}$$, respectively) are evaluated as: A(mK/W)=1.70 $$times$$ 10$$^{-2}$$ + 0.93C$$_{Nd}$$ + 1.20C$$_{Sm}$$, B(m/W)=2.39 $$times$$ 10$$^{-4}$$.

Journal Articles

New JENDL-4.0/HE neutron and proton ACE files

Konno, Chikara

Journal of Nuclear Science and Technology, 61(1), p.121 - 126, 2024/01

 Times Cited Count:1 Percentile:30.19(Nuclear Science & Technology)

The JENDL-4.0/HE neutron and proton ACE files were produced in 2017 and those of 22 nuclei for neutron and 25 nuclei for proton were bundled in the PHITS code. Recently it was found that the following five data in the JENDL-4.0/HE neutron and proton ACE files had any problems; ACE files for $$^{15}$$N and $$^{18}$$O, heating numbers, damage energy production cross sections, secondary neutron multiplicities and fission cross sections. Thus new JENDL-4.0/HE neutron and proton ACE files were produced with the problems fixed. This paper describes the problems and how to produce the new neutron and proton ACE files in detail.

Journal Articles

Estimation of continuous distribution of iterated fission probability using an artificial neural network with Monte Carlo-based training data

Tuya, D.; Nagaya, Yasunobu

Journal of Nuclear Engineering (Internet), 4(4), p.691 - 710, 2023/11

The Monte Carlo method is used to accurately estimate various quantities such as k-eigenvalue and integral neutron flux. However, when a distribution of a quantity is desired, the Monte Carlo method does not typically provide continuous distribution. Recently, the functional expansion tally and kernel density estimation methods have been developed to provide continuous distribution. In this paper, we propose a method to estimate a continuous distribution of a quantity using artificial neural network (ANN) model with Monte Carlo-based training data. As a proof of concept, a continuous distribution of iterated fission probability (IFP) is estimated by ANN models in two systems. The IFP distributions by the ANN models were compared with the Monte Carlo-based data and the adjoint angular neutron fluxes by the PARTISN code. The comparisons showed varying degrees of agreement or discrepancy; however, it was observed that the ANN models learned the general trend of the IFP distributions.

Journal Articles

Sintering and microstructural behaviors of mechanically blended Nd/Sm-doped MOX

Hirooka, Shun; Horii, Yuta; Sunaoshi, Takeo*; Uno, Hiroki*; Yamada, Tadahisa*; Vauchy, R.; Hayashizaki, Kohei; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato

Journal of Nuclear Science and Technology, 60(11), p.1313 - 1323, 2023/11

 Times Cited Count:5 Percentile:84.10(Nuclear Science & Technology)

Additive MOX pellets are fabricated by a conventional dry powder metallurgy method. Nd$$_{2}$$O$$_{3}$$ and Sm$$_{2}$$O$$_{3}$$ are chosen as the additive materials to simulate the corresponding soluble fission products dispersed in MOX. Shrinkage curves of the MOX pellets are obtained by dilatometry, which reveal that the sintering temperature is shifted toward a value higher than that of the respective regular MOX. The additives, however, promote grain growth and densification, which can be explained by the effect of oxidized uranium cations covering to a pentavalent state. Ceramography reveals large agglomerates after sintering, and Electron Probe Micro-Analysis confirms that inhomogeneous elemental distribution, whereas XRD reveals a single face-centered cubic phase. Finally, by grinding and re-sintering the specimens, the cation distribution homogeneity is significantly improved, which can simulate spent nuclear fuels with soluble fission products.

Journal Articles

Survey on technical issues of fission products behavior for improvement of decommissioning work efficiency and source term predicting accuracy; Report on the activity of this research committee for 2 years

Katsumura, Kosuke*; Takagi, Junichi*; Hosomi, Kenji*; Miyahara, Naoya*; Koma, Yoshikazu; Imoto, Jumpei; Karasawa, Hidetoshi; Miwa, Shuhei; Shiotsu, Hiroyuki; Hidaka, Akihide*; et al.

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 65(11), p.674 - 679, 2023/11

no abstracts in English

Journal Articles

Review of JENDL/HE-2007 neutron-induced fission cross sections of uranium-235 and 238 above 200 MeV

Fukahori, Tokio

INDC(JPN)-210 (Internet), 5 Pages, 2023/10

The $$^{235}$$U(n,f) cross section values were not correctly compiled in the ENDF format, and wrong values are disseminated in the JENDL/HE-2007 file. The high energy part of the $$^{235}$$U(n,f) cross section for the JENDL/HE-2007 library was evaluated by using the results of the FISCAL code. The correct $$^{235}$$U(n,f) cross section values of the JENDL/HE-2007 library above 200 MeV is given in this report.

Journal Articles

Neutron resonance fission neutron analysis for nondestructive fissile material assay

Hironaka, Kota; Lee, J.; Koizumi, Mitsuo; Ito, Fumiaki*; Hori, Junichi*; Terada, Kazushi*; Sano, Tadafumi*

Nuclear Instruments and Methods in Physics Research A, 1054, p.168467_1 - 168467_5, 2023/09

 Times Cited Count:3 Percentile:67.98(Instruments & Instrumentation)

Journal Articles

OECD/NEA ARC-F Project; Summary of fission product transport

Lind, T.*; Kalilainen, J.*; Marchetto, C.*; Beck, S.*; Nakamura, Koichi*; Kino, Chiaki*; Maruyama, Yu; Kido, Kentaro; Kim, S. I.*; Lee, Y.*; et al.

Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), p.4796 - 4809, 2023/08

Journal Articles

Measurement of the neutron-induced fission cross section of $$^{230}$$Th at the CERN n_TOF facility

Michalopoulou, V.*; Harada, Hideo; Kimura, Atsushi; 134 of others*

Physical Review C, 108(1), p.014616_1 - 014616_15, 2023/07

 Times Cited Count:1 Percentile:30.87(Physics, Nuclear)

Journal Articles

Status report of the n_TOF facility after the 2nd CERN long shutdown period

Patronis, N.*; Kimura, Atsushi; 130 of others*

EPJ Techniques and Instrumentation (Internet), 10, p.13_1 - 13_10, 2023/05

Journal Articles

JAEA-JRC collaborative development of delayed gamma-ray spectroscopy for nuclear safeguards nuclear material accountancy

Rodriguez, D.; Abbas, K.*; Bertolotti, D.*; Bonaldi, C.*; Fontana, C.*; Fujimoto, Masami*; Geerts, W.*; Koizumi, Mitsuo; Macias, M.*; Nonneman, S.*; et al.

Proceedings of INMM & ESARDA Joint Annual Meeting 2023 (Internet), 8 Pages, 2023/05

Journal Articles

Phase analysis of simulated nuclear fuel debris synthesized using UO$$_{2}$$, Zr, and stainless steel and leaching behavior of the fission products and matrix elements

Tonna, Ryutaro*; Sasaki, Takayuki*; Kodama, Yuji*; Kobayashi, Taishi*; Akiyama, Daisuke*; Kirishima, Akira*; Sato, Nobuaki*; Kumagai, Yuta; Kusaka, Ryoji; Watanabe, Masayuki

Nuclear Engineering and Technology, 55(4), p.1300 - 1309, 2023/04

 Times Cited Count:5 Percentile:84.10(Nuclear Science & Technology)

Simulated debris was synthesized using UO$$_{2}$$, Zr, and stainless steel and a heat treatment method under inert or oxidizing conditions. The primary U solid phase of the debris synthesized at 1473 K under inert conditions was UO$$_{2}$$, whereas a (U,Zr)O$$_{2}$$ solid solution formed at 1873 K. Under oxidizing conditions, a mixture of U$$_{3}$$O$$_{8}$$ and (Fe,Cr)UO$$_{4}$$ phases formed at 1473 K whereas a (U,Zr)O$$_{2+x}$$ solid solution formed at 1873 K. The leaching behavior of the fission products from the simulated debris was evaluated using two methods: the irradiation method, for which fission products were produced via neutron irradiation, and the doping method, for which trace amounts of non-radioactive elements were doped into the debris. The dissolution behavior of U depended on the properties of the debris and aqueous medium the debris was immersed in. Cs, Sr, and Ba leached out regardless of the primary solid phases. The leaching of high-valence Eu and Ru ions was suppressed, possibly owing to their solid-solution reaction with or incorporation into the uranium compounds of the simulated debris.

JAEA Reports

Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-069, 114 Pages, 2023/03

JAEA-Review-2022-069.pdf:5.91MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of a new corrosion mitigation technology using nanobubbles toward corrosion mitigation in PCV system under the influence of $$alpha$$/$$beta$$/$$gamma$$-rays radiolysis" conducted in FY2021. In this work, in order to ensure the long-term reliability of steel structures that ensure important confinement functions in the debris removal process, such as existing PCVs and newly constructed negative pressure maintenance systems and piping, corrosion phenomena in wet environments where $$alpha$$- and $$beta$$-ray emitting nuclides come into contact with steel are clarified for the first time.

Journal Articles

Chemical interaction between Sr vapor species and nuclear reactor core structure

Mohamad, A. B.; Nakajima, Kunihisa; Miwa, Shuhei; Osaka, Masahiko

Journal of Nuclear Science and Technology, 60(3), p.215 - 222, 2023/03

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

JAEA Reports

Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3 (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-053, 89 Pages, 2023/02

JAEA-Review-2022-053.pdf:3.47MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Uncertainty reduction of the FPs transport mechanism and debris degradation behavior and evaluation of the reactor contamination of debris state on the basis of the accident progression scenario of Fukushima Daiichi Nuclear Power Station Unit 2 and 3" conducted in FY2021. The present study aims to elucidate the cause of the high dosage under shield plug by clarification of to the cesium behavior of migration, adhesion to structure and deposition as well as evaluate the properties of metal-rich debris predeceasing melted through the materials science approach based on the most probable scenario of accident progression of Unit 2 and 3. In this fiscal year, the followings were achieved.

Journal Articles

Multinucleon-transfer-induced fission

Nishio, Katsuhisa

Handbook of Nuclear Physics (Internet), 43 Pages, 2022/11

535 (Records 1-20 displayed on this page)