Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Technical design of the pressure-resistant chamber for open inspections of the storage containers of nuclear fuel materials

Marufuji, Takato; Sato, Takumi; Ito, Hideaki; Suzuki, Hisashi; Fujishima, Tadatsune; Nakano, Tomoyuki

JAEA-Technology 2019-006, 22 Pages, 2019/05

JAEA-Technology-2019-006.pdf:2.84MB

Radioactive contamination incident occurred at Plutonium Fuel Research Facility (PFRF) in Oarai Research and Development Institute, Japan Atomic Energy Agency on June 6, 2017. During inspection work of storage container containing nuclear fuel materials, the PVC bag packaging in the storage container ruptured when a worker opened the lid in the hood, and a part of contents was spattered over the room. The cause of the increase of internal pressure of the storage container was gas generation by alpha radiolysis of the epoxy resin mixed with nuclear fuel materials. Opening inspection of about 70 similar containers stored in PFRF has been planned to confirm the condition of the contents and to stabilize the stored materials containing organic compounds. For safe and reliable open inspection of the storage containers with high internal pressure in the glove box, it is necessary to develop a pressure-resistant chamber in which the storage containers are opened and the contents are inspected under gastight condition. This report summarizes the concerns and countermeasures of the chamber design and the design results of the chamber.

Journal Articles

The Cause of corrosion occurred in a glove box filter casing and its repair technique

Mori, Eito; Yamamoto, Masahiko; Taguchi, Shigeo; Sato, Soichi; Kitao, Takahiko; Surugaya, Naoki

Nihon Hozen Gakkai Dai-11-Kai Gakujutsu Koenkai Yoshishu, p.132 - 138, 2014/07

The contamination of the radioactive material was observed on the filter casing surface of the glove box installed at the analytical laboratory in Tokai Reprocessing Plant. The cause of the contamination was investigated with visual inspection, penetrant testing and ultrasonic thickness measurement. It was found that a micro through-hole due to the corrosion of stainless-steel was generated in the glove box filter casing. The repair work of the filter casing was performed keeping the glove box negative pressure. The corrosion part of filter casing was replaced and newly fabricated casing was connected to the glove box with Tungsten Inert Gas welding method.

Journal Articles

Study on safety evaluation for nuclear fuel cycle facility under fire accident conditions

Tashiro, Shinsuke; Abe, Hitoshi; Morita, Yasuji

JAERI-Conf 2005-007, p.348 - 350, 2005/08

Hot test at Rokkasho Reprocessing plant has been started since last year. In addition, construction of the MOX fuel fabrication facility at Rokkasho site is planning. So, the importance of safety evaluation of the nuclear fuel cycle facility is increasing. Under the fire accident, one of the serious postulated accidents in the nuclear fuel cycle facility, the equipments (glove-box, ventilation system, ventilation filters etc.) for the confinement of the radioactive materials within the facility could be damaged by a large amount of heat and smoke released from the combustion source. Therefore, the fundamental data and models calculating for the amount of heat and smoke released from the combustion source under such accident are important for the safety evaluation of the facility. In JAERI, the study focused on the evaluation of amount of heat and smoke released from the combustion source is planning. In this paper, the outline of experimental apparatus, measurement items and evaluation terms are described.

JAEA Reports

Design and installation of high-temperature ultrasonic measuring system and grinder for nuclear fuel containing trans-uranium elements

Serizawa, Hiroyuki; Kikuchi, Hironobu; Iwai, Takashi; Arai, Yasuo; Kurosawa, Makoto; Mimura, Hideaki; Abe, Jiro

JAERI-Tech 2005-039, 23 Pages, 2005/07

JAERI-Tech-2005-039.pdf:2.89MB

A high-temperature ultrasonic measuring system had been designed and installed in a glovebox (711-DGB) to study a mechanical property of nuclear fuel containing trans-uranium (TRU) elements. A figuration apparatus for the cylinder-type sample preparation had also been modified and installed in an established glovebox (142-D). The system consists of an ultrasonic probe, a heating furnace, cooling water-circulating system, a cooling air compressor, vacuum system, gas supplying system and control system. An A/D converter board and an pulsar/Receiver board for the measurement of wave velocity were installed in a personal computer. The apparatus was modified to install into the glovebox. Some safety functions were supplied to the control system. The shape and size of the sample was revised to minimize the amount of TRU elements for the use of the measurement. The maximum sample temperature is 1500 $$^{circ}$$C. The performance of the installed apparatuses and the glovebox were confirmed through a series of tests.

JAEA Reports

Investigation report on the ruptured glove of ash removing room in the waste treatment building No.1 in JAERI Tokai Research Establishment

JAERI's Internal Investigation Group on the Ruptured Glove; Department of Decommissioning and Waste Management

JAERI-Review 2002-017, 121 Pages, 2002/09

JAERI-Review-2002-017.pdf:13.36MB

On November 21st, 2001, the glove rupture arose at an incinerator of Waste Treatment Building No.1 in JAERI Tokai Research Establishment. In order to examine the cause and recurrence prevention measure of the rupture, JAERI's Internal Investigation Group on the Ruptured Glove investigated the conditions of the incinerator including ash removing equipment and the glove, types and properties of waste which was incinerated on that day, and background factor of the trouble in cooperation with Department of Decommissioning and Waste Management.As the result, the causes of the rupture were that the solidification of liquid scintillator waste was insufficient, that the protective cover of the glove does not have pressure resistance and the degraded glove was used. For preventing the recurrence of the trouble, the direct confirmation of the solidification condition, the installation of protective cover for the glove, the improvement of the management of the glove, review of manuals and education and training were carried out.

Journal Articles

Monitoring of air concentration in dismantling of glove-boxes

Kobayashi, Makoto

Hoken Butsuri, 34(4), p.412 - 414, 1999/12

no abstracts in English

Journal Articles

Measurement of HTO permeability of materials for protective appliances

Yamamoto, Hideaki; *; Kato, Shohei; Murata, Mikio; Kinouchi, Nobuyuki;

Proc. of the Int. Radiation Protection Association,Vol. 1, p.467 - 470, 1992/00

no abstracts in English

JAEA Reports

Preparatio of uranium carbide pellets

; ; Abe, Jiro; ; ;

JAERI-M 7601, 36 Pages, 1978/03

JAERI-M-7601.pdf:1.95MB

no abstracts in English

Journal Articles

Plutomium fuel reseanch facility for advanced LMFBR fuel

;

Nihon Genshiryoku Gakkai-Shi, 19(8), p.526 - 529, 1977/08

 Times Cited Count:0

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1