Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Koide, Kaoru
JAEA-Research 2023-003, 101 Pages, 2023/06
This study developed a geobotanical remote sensing method for estimating high water table areas such as groundwater discharge points using differences in the growth conditions of forest trees induced by moisture supply from groundwater in a humid warm-temperate forest area. A new vegetation index (VI) termed AgbNDVI (Added green band NDVI) was proposed to discriminate the differences. The AgbNDVI proved to be more sensitive to water stress on green vegetation than existing VIs: SAVI and EVI2, and possessed a strong linear correlation with the vegetation fraction. To validate the proposed method, a 23 km study area was selected in the Tono region of Gifu Prefecture, central Japan. The AgbNDVI values were calculated from atmospheric corrected SPOT HRV data. To correctly detect high VI points, the influence factors on tree growth were identified using the AgbNDVI values, DEM and forest type data; the study area was then divided into 555 segments according to combinations of the influence factors: elevation, slope gradient, slope aspect and forest type. Thresholds for detecting high VI points were defined for each segment based on a histogram of AgbNDVI values. By superimposing the high VI points on topographic and geologic maps, most of the high VI points are clearly located on the concave/convex slopes and near the geologic boundaries prone to groundwater runoff. In addition, field investigations support the correctness of the high VI points, because the growth increments and biomass of trees () are greater than at points other than the high VI points, and they are located around known groundwater seeps and in a high water table area. Consequently, the proposed method can be expected to provide useful information for characterizing hydrogeological structures by combining with conventional photo-geological interpretation.
Sawaguchi, Takuma; Takai, Shizuka; Sasagawa, Tsuyoshi; Uchikoshi, Emiko*; Shima, Yosuke*; Takeda, Seiji
MRS Advances (Internet), 8(6), p.243 - 249, 2023/06
In the intermediate depth disposal of relatively high-level radioactive waste, a method to confirm whether the borehole for monitoring is properly sealed should be developed in advance. In this study, groundwater flow analyses were performed for the hydrogeological structures with backfilled boreholes, assuming sedimentary rock area, to understand what backfill design conditions could prevent significant water pathways in the borehole, and to identify the confirmation points of borehole sealing. The results indicated the conditions to prevent water pathways in the borehole and BDZ (Borehole Disturbed Zone), such as designing the permeability of bentonite material less than or equal to that of the host rock, and grouting BDZ.
Terashima, Motoki; Endo, Takashi*; Kimuro, Shingo; Beppu, Hikari*; Nemoto, Kazuaki*; Amano, Yuki
Journal of Nuclear Science and Technology, 60(4), p.374 - 384, 2023/04
Times Cited Count:2 Percentile:38.50(Nuclear Science & Technology)Miyakawa, Kazuya; Nakata, Kotaro*
JAEA-Data/Code 2022-013, 19 Pages, 2023/03
In the Horonobe Underground Research Laboratory (URL) project, groundwater chemistry was analyzed to investigate changes due to the excavation of the underground facility and to review geochemical models until the fiscal year 2019. From the fiscal year 2020, to proceed remaining important issues deduced from the conclusion of the investigations during the fiscal year 2015-2019, primary data such as groundwater chemistry need to be successively acquired. Here, the chemical analysis of 54 groundwater samples in 2022 from boreholes drilled in the 140 m, 250 m, 350 m gallery in the Horonobe URL, and water rings settled in three vertical shafts is presented. Analytical results include groundwater chemistry such as pH, electrical conductivity, dissolved components (Na, K, Ca, Mg, Li, NH, F, Cl, Br, NO, NO, PO, SO, Total-Mn, Total-Fe, Al, B, Sr, Ba, I, alkalinity, dissolved organic carbon, dissolved inorganic carbon, CO, HCO, Fe, sulfide), and O, D along with a detailed description of analytical methods.
Park, Y.-J.*; Sawada, Atsushi; Ozutsumi, Takenori*; Tanaka, Tatsuya*; Hashimoto, Shuji*; Morita, Yutaka*
Proceedings of 3rd International Conference on Discrete Fracture Network Engineering (DFNE 2022) (Internet), 8 Pages, 2022/00
Safety analysis for underground disposal facilities for high-level radioactive waste requires thorough understanding of long-term groundwater flow and nuclide migration processes in geologic media. In the coastal subsurface systems, groundwater flow is defined by the complex interactions between freshwater of meteoric origin and denser saline water from the sea. In addition, sea levels are expected to fluctuate significantly due to a transgression and regression of the sea over the millions of years for safety analysis. This study presents long-term evolution of groundwater environment such as salinity concentration and flow velocity with focus of the interaction between fractures and matrix blocks in regional and near-field scale analysis framework for groundwater flow and nuclide migration for underground disposal facilities in hypothetical fractured crystalline coastal systems.
Nagao, Rina; Namekawa, Maki*; Totsuka, Masayoshi*; Nakata, Hisakazu; Sakai, Akihiro
JAEA-Technology 2021-009, 139 Pages, 2021/06
Japan Atomic Energy Agency is the implementing body of the near surface disposal of low-level radioactive waste (LLW) generated from research facilities and other facilities. Concrete-pit disposal are considered as a method of disposing of the LLW. Since the concrete-pits are placed at deeper position than the groundwater level, we need to consider that radionuclides might migrate with the flow of groundwater. Accordingly, in order to explain the safety of the concrete-pit disposal facility, it is necessary to investigate the flow of groundwater and the volumetric flow rate of leaching water from the facility. Therefore, in this report, sensitivity analysis of the volumetric flow rate of leaching water from concrete-pit was carried out by varying the permeability of cover-soil filled with in outside of the lateral sides of the bentonite mixed soil (BMS) and the conditions of the BMS on the upper part of the concrete-pits. As a result of the analysis, when the BMS is normal condition, the volumetric flow rate of leaching water from the concrete-pits is reduced by lowering permeability of the lateral cover-soil. However, in the case of occurring the deterioration of the function of BMS on the upper part of the concrete-pit, significant reduction of the volumetric flow rate of leaching water is not seen even if the permeability of the lateral cover-soil is lowered. Therefore, taking into consideration the possibility of the deterioration of the function of BMS on the upper part of the concrete-pit, it is necessary to consider that cover-soil with low permeability is equipped on the upper part of the BMS.
Miyakawa, Kazuya
JAEA-Data/Code 2021-003, 25 Pages, 2021/05
Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (HURL) project. In the fiscal year 2020, to proceed remaining important issues which were deduced from the conclusion of the investigations during the fiscal year 2015-2019, basic data such as groundwater chemistry need to be successively acquired. In the fiscal year 2020, groundwater was sampled from boreholes drilled in the 140 m, 250 m, 350 m gallery in the HURL, and water rings settled in three each vertical shaft, and groundwater chemistries of 41 samples were analyzed. Here, analytical results of groundwater chemistry such as physicochemical parameters, dissolved ions, oxygen and hydrogen isotope ratios, and tritium content, which were obtained in the fiscal year 2020, were reported along with a detailed description of analytical methods.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Aosai, Daisuke*; Hara, Naohiro*
JAEA-Data/Code 2020-012, 80 Pages, 2020/10
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2019. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2019-019, 74 Pages, 2020/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2018. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Nakata, Kotaro*; Hasegawa, Takuma*; Solomon, D. K.*; Miyakawa, Kazuya; Tomioka, Yuichi*; Ota, Tomoko*; Matsumoto, Takuya*; Hama, Katsuhiro; Iwatsuki, Teruki; Ono, Masahiko*; et al.
Applied Geochemistry, 104, p.60 - 70, 2019/05
Times Cited Count:8 Percentile:39.25(Geochemistry & Geophysics)no abstracts in English
Fukuda, Kenji; Watanabe, Yusuke; Murakami, Hiroaki; Amano, Yuki; Hayashida, Kazuki*; Aosai, Daisuke*; Kumamoto, Yoshiharu*; Iwatsuki, Teruki
JAEA-Data/Code 2018-021, 76 Pages, 2019/03
Japan Atomic Energy Agency has been investigating groundwater chemistry to understand the influence of excavation and maintenance of underground facilities as part of the Mizunami Underground Research Laboratory (MIU) Project in Mizunami, Gifu, Japan. In this report, we compiled data of groundwater chemistry and microbiology obtained at the MIU in the fiscal year 2017. In terms of ensuring traceability of data, basic information (e.g. sampling location, sampling time, sampling method and analytical method) and methodology for quality control are described.
Sasamoto, Hiroshi; Sato, Hisao*; Arthur, R. C.*
Journal of Geochemical Exploration, 188, p.318 - 325, 2018/05
Times Cited Count:3 Percentile:15.22(Geochemistry & Geophysics)Ammonium is potentially an important constituent of deep groundwater under reducing condition. The retention of cesium by sorption in geological formations may have an important role ensuring the long-term safety of high-level radioactive waste. Cesium sorption will be affected by competing effects due to dissolve cation likely ammonium in groundwater, however. In the present study, a possible reaction to control of ammonium in deep groundwater was evaluated based on the data selected in the Horonobe as a test case in Japan. Results of investigation of mineralogy, thermodynamic evaluation of groundwaters and the Electron Probe Micro Analysis (EPMA) to identify nitrogen distribution on minerals suggest that the clay minerals bearing potassium, particularly smectite, illite and interstratified illite/smectite, appear to control the ammonium concentration in groundwaters by ion exchange reactions. Additionally, the selected groundwaters in the Horonobe seem to resemble to the gas and oil fields groundwater in the screened dataset in Japan in terms of ammonium distribution.
Nakata, Kotaro*; Hasegawa, Takuma*; Oyama, Takahiro*; Ishii, Eiichi; Miyakawa, Kazuya; Sasamoto, Hiroshi
Geofluids, 2018, p.7823195_1 - 7823195_21, 2018/01
Times Cited Count:10 Percentile:57.52(Geochemistry & Geophysics)A groundwater scenario is one of the scenario for safety assessment of geological disposal of high-level radioactive waste. In the safety assessment for groundwater scenario, the slow groundwater flow for a long-term should be an important factor. In the present study, study on stability of groundwater in the Koetoi and Wakkanai formations of Neogene marine based sedimentary rock at the Horonobe area, Hokkaido was performed by investigating the isotopes of chlorine and helium, and the stable isotopes of water. As the results, the stability of groundwater in deeper part of the Wakkanai formation was suggested due to no direct evidence of meteoric water intrusion during the uplift since ca. 1 Ma. Contrary, the groundwater both in the Koetoi formation and the upper Wakkanai formation would be unstable because the meteoric water intrusion was suggested by paleohydrogeological condition and the results of groundwater dating. Likely the Horonobe area, the accurate dating of groundwater would be difficult due to the complex effects of upward and mixing water derived from diagenesis in the thick sediment formation. However, a comparative procedure using both the results of groundwater dating and paleohydrogeological information would be useful for general evaluation of groundwater flow conditions for the long-term (i.e., check the possibility for long-term stability of groundwater).
Miyakawa, Kazuya; Mezawa, Tetsuya; Mochizuki, Akihito; Sasamoto, Hiroshi
JAEA-Data/Code 2017-012, 60 Pages, 2017/10
Development of technologies to investigate properties of deep geological environment and model development of geological environment have been pursued in "Geoscientific Research" in the Horonobe Underground Research Laboratory (Horonobe URL) project. A geochemical model which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years from the fiscal year 2014 to 2016, especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.
Ueno, Tetsuro; Takeuchi, Ryuji
JAEA-Data/Code 2017-003, 46 Pages, 2017/03
Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction Phase (Phase II), and Operation phase (Phase III). As for The MIU Project (Phase II) was carried out from 2004 fiscal year, and has been started the Phase III in 2010 fiscal year. The groundwater inflow monitoring into shafts and research galleries, has been maintained to achieve the Phase II goals, begins in 2004 fiscal year and follow now. This document presents the results of the groundwater inflow monitoring from fiscal year 2014 to 2015.
Yamaguchi, Tetsuji; Sawaguchi, Takuma; Tsukada, Manabu; Hoshino, Seiichi*; Tanaka, Tadao
Clay Minerals, 51(2), p.279 - 287, 2016/02
Times Cited Count:7 Percentile:22.82(Chemistry, Physical)Alteration of bentonite-cement interfaces and accompanying changes in diffusivity of tritiated water was experimentally investigated using intact hardened cement specimens. The alteration by carbonate solution was accompanied by mineralogical changes at the interface and a decrease in the diffusivity to 70% of the initial value after 180-day period. Another alteration under silicate system contacting hardened cement and compacted bentonite was accompanied by mineralogical changes at the interface and a decrease in the diffusivity to 71% of the initial value after 600-day period. The changes in the diffusivity were much less than those observed for mixed specimens of granulated hardened cement and bentonite where the diffusivity decreased down to 20% of the initial value over 180 days. The results were extrapolated to 15 years under simple assumptions and showed good agreement with those observed in the cement-argillite interface at Tournemire URL. Such an explanation enhances our confidence in our assessment of alteration of cement-bentonite systems and can be a base for using our data and models in long term assessment of radioactive waste disposal.
Saegusa, Hiromitsu; Onoe, Hironori; Kohashi, Akio; Watanabe, Masahisa
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 7 Pages, 2015/05
Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company is facing contaminated water issues. The amount of contaminated water is continuously increasing due to groundwater leakage into the underground part of reactor and turbine buildings. Therefore, it is important to understand the groundwater flow conditions at the site and to predict the impact of countermeasures taken for isolating groundwater from the source of the contamination, i.e. the reactor buildings. Installations, such as of land-side and sea-side impermeable walls have been planned as countermeasures. In this study, groundwater flow modeling has been performed to estimate the response of groundwater flow conditions to the countermeasures. From the modeling, groundwater conditions and changes in response to implementation of the countermeasures could be reasonably estimated. The results indicate that the countermeasures will decrease the volume of inflow into underground part of the buildings. This means that the countermeasures will be effective in reducing the discharge volume of contaminated groundwater to ocean.
Sasamoto, Hiroshi; Yamamoto, Nobuyuki; Miyakawa, Kazuya; Mizuno, Takashi
JAEA-Data/Code 2014-033, 43 Pages, 2015/03
Development of technologies to investigate properties (conditions) of deep geological environment and models development of geological environment have been pursued in "Geoscientific Research" in the Horonobe underground research laboratory (Horonobe URL) project. A geochemical model of groundwater evolution which is a part of geological environment model requires the data of groundwater chemistry around the Horonobe URL for the development. This report summarizes the data obtained for 3 years (i.e., from the fiscal year 2011 to 2013), especially for the results for measurement of physico-chemical parameters and analysis of groundwater chemistry, in the Horonobe URL project.
Takayama, Yusuke; Sato, Toshinori; Onoe, Hironori; Iwatsuki, Teruki; Saegusa, Hiromitsu; Onuki, Kenji
Dai-43-Kai Gamban Rikigaku Ni Kansuru Shimpojiumu Koenshu (CD-ROM), p.313 - 318, 2015/01
In the Mizunami Underground Research Laboratory, groundwater recovery experiment is being conducted to construct the method to understand the transition of geological environment due to groundwater recovery at the -500m access and research gallery-north. As a part of this experiment, backfill test is planned using drilling pits filled with artificial materials (clay and concrete) to evaluate the influence on the surrounding rock mass due to the interaction of rock and artificial materials. In this study, numerical simulation of the backfill test has been carried out to predict the qualitative hydro-mechanical behavior.
Mitamura, Hisayoshi
JAERI-Review 2003-007, 54 Pages, 2003/03
The inevitable increases of food production and energy consumption with an increase in world population become main causes of an increase of nitrate load to the environment. Although nitrogen is essential for the growth of animal and plant as a constituent element of protein, excessive nitrate load to the environment contaminates groundwater resources used as drinking water and leads to seriously adverse effects on the health of man and livestock. In order to clarify the problem of nitrate contamination of groundwater and search a new trend of technology development from the viewpoint of environmental remediation and protection, the present paper has reviewed adverse effects of nitrate on human health, the actual state of nitrogen cycle, several kinds of nitrate sources, treatment methods for reducing nitrate level, etc.