Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 633

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Comparisons between passive RCCSS on degree of passive safety features against accidental conditions and methodology to determine structural thickness of scaled-down heat removal test facilities

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 162, p.108512_1 - 108512_10, 2021/11

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

The objectives of this study are as follows: to understand the characteristics, degree of passive safety features for heat removal were compared for RCCSs based on atmospheric radiation and based on atmospheric natural circulation under the same conditions. Next, simulations on accidental conditions, such as increasing average heat-transfer coefficient via natural convection due to natural disasters, were performed with STAR-CCM+, and methodology to control the amount of heat removal was discussed. As a result, a new RCCS based on atmospheric radiation is recommended because of the excellent degree of passive safety features/conditions, and the amount of heat removal by heat transfer surfaces which can be controlled. Finally, methodology to determine structural thickness of scaled-down heat removal test facilities for reproducing natural convection and radiation was developed, and experimental methods by using pressurized and decompressed chambers was also proposed.

JAEA Reports

Impact assessment for internal flooding in HTTR (High temperature engineering test reactor)

Tochio, Daisuke; Nagasumi, Satoru; Inoi, Hiroyuki; Hamamoto, Shimpei; Ono, Masato; Kobayashi, Shoichi; Uesaka, Takahiro; Watanabe, Shuji; Saito, Kenji

JAEA-Technology 2021-014, 80 Pages, 2021/09

JAEA-Technology-2021-014.pdf:5.87MB

In response to the new regulatory standards established in response to the accident at TEPCO's Fukushima Daiichi Nuclear Power Station in March 2011, measures and impact assessments related to internal flooding at HTTR were carried out. In assessing the impact, considering the characteristics of the high-temperature gas-cooled reactor, flooding due to assumed damage to piping and equipment, flooding due to water discharge from the system installed to prevent the spread of fire, and flooding due to damage to piping and equipment due to an earthquake. The effects of submersion, flooding, and flooding due to steam were evaluated for each of them. The impact of the overflow of liquids containing radioactive materials outside the radiation-controlled area was also evaluated. As a result, it was confirmed that flooding generated at HTTR does not affect the safety function of the reactor facility by taking measures.

Journal Articles

Concepts and basic designs of various nuclear fuels, 5; Fuels for high temperature gas-cooled reactor and molten salt reactor

Ueta, Shohei; Sasaki, Koei; Arita, Yuji*

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(8), p.615 - 620, 2021/08

no abstracts in English

Journal Articles

Comparison between passive reactor cavity cooling systems based on atmospheric radiation and atmospheric natural circulation

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 151, p.107867_1 - 107867_11, 2021/02

 Times Cited Count:1 Percentile:83.53(Nuclear Science & Technology)

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We compared the RCCS using atmospheric radiation with that using atmospheric natural circulation in terms of passive safety features and control methods for heat removal. The magnitude relationship for passive safety features is heat conduction $$>$$ radiation $$>$$ natural convection. Therefore, the magnitude for passive safety features of the former RCCS can be higher than that of the latter RCCS. In controlling the heat removal, the former RCCS changes the heat transfer area only. On the other hand, the latter RCCS needs to change the chimney effect. It is necessary to change the air resistance in the duct. Therefore, the former RCCS can control the heat removal more easily than the latter RCCS.

Journal Articles

Derivation of ideal power distribution to minimize the maximum kernel migration rate for nuclear design of pin-in-block type HTGR

Okita, Shoichiro; Fukaya, Yuji; Goto, Minoru

Journal of Nuclear Science and Technology, 58(1), p.9 - 16, 2021/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Suppressing the kernel migration rates, which depend on both the fuel temperature and the fuel temperature gradient, under normal operation condition is quite important from the viewpoint of the fuel integrity for High Temperature Gas-cooled Reactors. The presence of the ideal axial power distribution to minimize the maximum kernel migration rate allows us to improve efficiency of design work. Therefore, we propose a new method based on Lagrange multiplier method in consideration of thermohydraulic design in order to obtain the ideal axial power distribution to minimize the maximum kernel migration rate. For one of the existing conceptual designs performed by JAEA, the maximum kernel migration rate for the power distribution to minimize the maximum kernel migration rate proposed in this study is lower by approximately 10% than that for the power distribution as a conventional design target to minimize the maximum fuel temperature.

Journal Articles

Innovation for flexible use of nuclear power in JAEA

Kamide, Hideki; Shibata, Taiju

NREL/TP-6A50-77088 (Internet), p.35 - 38, 2020/09

JAEA Reports

Assessment report on research and development activities in FY2019; Activity "Research and development on high temperature gas-cooled reactor and related heat application technology" (Interim report)

Sector of Fast Reactor and Advanced Reactor Research and Development

JAEA-Evaluation 2020-001, 128 Pages, 2020/08

JAEA-Evaluation-2020-001.pdf:7.44MB

Japan Atomic Energy Agency consulted with the "Evaluation Committee of Research Activities for High Temperature Gas-cooled Reactor (hereinafter referred to as "HTGR") and Related Hydrogen Production Technology" (hereinafter referred to as "Evaluation Committee"), which consists of specialists in the fields of the evaluation subjects of high temperature gas-cooled reactor and related heat application technology, for interim assessment in the 3rd Mid-and Long-Term Plan about the relevance of the management and research activities of the HTGR and related application technology during the period from April 2017 to March 2020. As a result, three members of the Evaluation Committee concluded a score of "S", and seven members of the Evaluation Committee concluded a score of "A". The interim assessment to research and development activities from April 2017 to March 2020 was concluded a score of "A". In addition, the Evaluation Committee recommended that the judgement to move to the construction phase of the HTTR-heat utilization test plant be made after 2 years, after the HTTR will be restarted and the thermal load fluctuation tests using HTTR will be carried out. This report lists the members of the Evaluation Committee and outlines the assessment item and the review process for procedure of the assessment. The assessment report which was issued by the Evaluation Committee is attached.

Journal Articles

Proliferation resistance evaluation of an HTGR transuranic fuel cycle using PRAETOR code

Aoki, Takeshi; Chirayath, S. S.*; Sagara, Hiroshi*

Annals of Nuclear Energy, 141, p.107325_1 - 107325_7, 2020/06

 Times Cited Count:1 Percentile:42.23(Nuclear Science & Technology)

The proliferation resistance (PR) of an inert matrix fuel (IMF) in the transuranic nuclear fuel cycle (NFC) of a high temperature gas cooled reactor is evaluated relative to the uranium and plutonium mixed-oxide (MOX) NFC of a light water reactor using PRAETOR code and sixty-eight input attributes. The objective is to determine the impacts of chemical stability of IMF and fuel irradiation on the PR. Specific material properties of the IMF, such as lower plutonium content, carbide ceramics coating, and absence of $$^{235}$$U, contribute to enhance its relative PR compared to MOX fuel. The overall PR value of the fresh IMF (an unirradiated direct use material with a one-month diversion detection timeliness goal) is nearly equal to that of the spent MOX fuel (an irradiated direct use nuclear material with a three-month diversion detection timeliness goal). Final results suggest a reduced safeguards inspection frequency to manage the IMF.

Journal Articles

Research and development on high burnup HTGR fuels in JAEA

Ueta, Shohei; Mizuta, Naoki; Sasaki, Koei; Sakaba, Nariaki; Ohashi, Hirofumi; Yan, X.

Mechanical Engineering Journal (Internet), 7(3), p.19-00571_1 - 19-00571_12, 2020/06

JAEA has been progressing to design HTGR fuels for not only small-type practical HTGRs but also VHTR proposed in GIF which can be utilized for various purposes with high-temperature heat at 750 to 950 $$^{circ}$$C. To increase economy of these HTGRs, JAEA has been upgrading the design method for the HTGR fuel, which can maintain their integrities at the burnup of three to four times higher than that of the conventional HTTR fuel. Design principles and specifications of various concepts of the high burnup HTGR fuels designed by JAEA are reported. As the latest results on post-irradiation examinations of the high burnup HTGR fuel progressing in a framework of international collaboration with Kazakhstan, irradiation shrinkage rate of the fuel compact as a function of fast neutron fluence was obtained at around 100 GWd/t. Furthermore, the future R&Ds needed for the high burnup HTGR fuel are described based on these experimental results.

Journal Articles

Conceptual design study of a high performance commercial HTGR for early introduction

Fukaya, Yuji; Mizuta, Naoki; Goto, Minoru; Ohashi, Hirofumi; Yan, X.

Nuclear Engineering and Design, 361, p.110577_1 - 110577_6, 2020/05

 Times Cited Count:1 Percentile:42.23(Nuclear Science & Technology)

Conceptual design study of a commercial High Temperature Gas-cooled Reactor (HTGR) for early introduction has been performed based on the cumulated experience in design, construction, and operation of the High Temperature engineering Test Reactor (HTTR) and design of the commercial Gas Turbine High Temperature Reactor 300 (GTHTR300). The power output is 165 MWt and the inlet and outlet coolant temperatures are 325$$^{circ}$$C and 750$$^{circ}$$C, respectively, to provide steam for industrial utilization. However, given a requirement for the reactor pressure vessel to be smaller even that of the 30 MWt HTTR, several challenging technical problems have to be dealt with to arrive in a high performance core design that provides extended fuel burnup, prolonged refueling period, improved fuel refueling scheme, improved fuel element and so on from the HTTR.

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2018)

Department of HTTR

JAEA-Review 2019-049, 97 Pages, 2020/03

JAEA-Review-2019-049.pdf:4.66MB

The High Temperature Engineering Test Reactor (HTTR), a graphite-moderated and helium gas-cooled reactor being able to get 950$$^{circ}$$C temperature of the outlet coolant with 30 MW of thermal power, constructed at the Oarai Research and Development Institute of the Japan Atomic Energy Agency is the first High- Temperature Gas-cooled Reactor (HTGR) in Japan. The purpose of the HTTR is to establish and upgrade basic technologies for HTGRs. The HTTR has accumulated a lot of experience of HTGRs' operation and maintenance up to the present time throughout rated power operations, safety demonstration tests, long-term high temperature operations and demonstration tests relevant to HTGRs' R&Ds. In the fiscal year 2018, we made effort to pass the inspection of application document for the HTTR licensing to prove conformity with the new regulatory requirements for research reactors that took effect since December 2013 in order to restart operations of the HTTR that stopped since the 2011 off the Pacific coast of Tohoku Earthquake. This report summarizes the activities carried out in the 2018 fiscal year, which were the situation of the new regulatory requirements screening of the HTTR, the operation and maintenance of the HTTR, R&Ds relevant to commercial-scale HTGRs, the international cooperation on HTGRs and so on.

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:42.23(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

Journal Articles

Comparative methodology between actual RCCS and downscaled heat-removal test facility

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 133, p.830 - 836, 2019/11

 Times Cited Count:2 Percentile:44.1(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. Moreover, the authors started experiment research with using a scaled-down heat-removal test facility. Therefore, this study propose a comparative methodology between an actual RCCS and a scaled-down heat-removal test facility.

Journal Articles

Conceptual design of direct $$^{rm 99m}$$Tc production facility at the high temperature engineering test reactor

Ho, H. Q.; Ishida, Hiroki*; Hamamoto, Shimpei; Ishii, Toshiaki; Fujimoto, Nozomu*; Takaki, Naoyuki*; Ishitsuka, Etsuo

Nuclear Engineering and Design, 352, p.110174_1 - 110174_7, 2019/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

JAEA Reports

Operation, test, research and development of the High Temperature Engineering Test Reactor (HTTR) (FY2017)

Department of HTTR

JAEA-Review 2019-006, 97 Pages, 2019/07

JAEA-Review-2019-006.pdf:10.18MB

The High Temperature Engineering Test Reactor (HTTR) was constructed to establish and upgrade basic technologies for HTGRs. In the fiscal year 2017 we continued activities for re-operation of the HTTR and have been inspected the application document for the HTTR licensing to prove conformity with the new regulatory requirements for research reactors taken effect since December 2013 had been applied. This report summarizes activities and results of HTTR operation, maintenance, international cooperation and so on which were carried out in the fiscal year 2017.

Journal Articles

Research and development on high burnup HTGR fuels in JAEA

Ueta, Shohei; Mizuta, Naoki; Sasaki, Koei; Sakaba, Nariaki; Ohashi, Hirofumi; Yan, X.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 8 Pages, 2019/05

JAEA has been progressing to design HTGR fuels for not only small-type practical HTGRs but also VHTR proposed in GIF which can be utilized for various purposes with high-temperature heat at 750 to 950 $$^{circ}$$C. To increase economy of these HTGRs, JAEA has been upgrading the design method for the HTGR fuel, which can maintain their integrities at the burnup of three to four times higher than that of the conventional HTTR fuel. Design principles and specifications of various concepts of the high burnup HTGR fuels designed by JAEA are reported. As the latest results on post-irradiation examinations of the high burnup HTGR fuel progressing in a framework of international collaboration with Kazakhstan, irradiation shrinkage rate of the fuel compact as a function of fast neutron fluence was obtained at around 100 GWd/thm. Furthermore, the future R&Ds needed for the high burnup HTGR fuel are described based on these experimental results.

Journal Articles

Study of SiC-matrix fuel element for HTGR

Mizuta, Naoki; Aoki, Takeshi; Ueta, Shohei; Ohashi, Hirofumi; Yan, X.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 5 Pages, 2019/05

Enhancement of safety and cooling performance of fuel elements are desired for a commercial High Temperature Gas-cooled Reactor (HTGR). Applying sleeveless fuel elements and dual side directly cooling structures with oxidation resistant SiC-matrix fuel compact has a possibility of improving safety and cooling performance at the pin-in-block type HTGR. The irradiated effective thermal conductivity of a fuel compact is an important physical property for core thermal design of the pin-in-block type HTGR. In order to discuss the irradiated effective thermal conductivity of the SiC-matrix fuel compact which could improve the cooling performance of the reactor, the maximum fuel temperature during normal operation of the pin-in-block type HTGR with dual side directly cooling structures are analytically evaluated. From these results, the desired irradiated thermal conductivity of SiC matrix are discussed. In addition, the suitable fabrication method of SiC-matrix fuel compact is examined from viewpoints of the sintering temperature, the purity and the mass productivity.

Journal Articles

Improvement of heat-removal capability using heat conduction on a novel reactor cavity cooling system (RCCS) design with passive safety features through radiation and natural convection

Takamatsu, Kuniyoshi; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*

Annals of Nuclear Energy, 122, p.201 - 206, 2018/12

 Times Cited Count:3 Percentile:47(Nuclear Science & Technology)

A RCCS having passive safety features through radiation and natural convection was proposed. The RCCS design consists of two continuous closed regions: an ex-reactor pressure vessel region and a cooling region with a heat-transfer surface to ambient air. The RCCS uses a novel shape to remove efficiently the heat released from the RPV through as much radiation as possible. Employing air as the working fluid and ambient air as the ultimate heat sink, the RCCS design can strongly reduce the possibility of losing the working fluid and the heat sink for decay-heat-removal. This study addresses an improvement of heat-removal capability using heat conduction on the RCCS. As a result, a heat flux removed by the RCCS could be doubled; therefore, it is possible to halve the height of the RCCS or increase the thermal reactor power.

Journal Articles

Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors

Goto, Minoru; Okumura, Keisuke; Nakagawa, Shigeaki; Inaba, Yoshitomo; Matsuura, Hideaki*; Nakaya, Hiroyuki*; Katayama, Kazunari*

Fusion Engineering and Design, 136(Part A), p.357 - 361, 2018/11

 Times Cited Count:1 Percentile:18.37(Nuclear Science & Technology)

A High Temperature Gas-cooled Reactor (HTGR) is proposed as a tritium production device, which has the potential to produce a large amount of tritium using $$^{6}$$Li(n,$$alpha$$)T reaction. In the HTGR design, generally, boron is loaded into the core as a burnable poison to suppress excess reactivity. In this study, lithium is loaded into the HTGR core instead of boron and is used as a burnable poison aiming to produce thermal energy and tritium simultaneously. The nuclear characteristics and the fuel temperature were calculated to confirm the feasibility of the lithium-loaded HTGR. It was shown that the calculation results satisfied the design requirements and hence the feasibility was confirmed for the lithium-loaded HTGR, which produce thermal energy and tritium.

Journal Articles

Experimental study on heat removal performance of a new Reactor Cavity Cooling System (RCCS)

Hosomi, Seisuke*; Akashi, Tomoyasu*; Matsumoto, Tatsuya*; Liu, W.*; Morita, Koji*; Takamatsu, Kuniyoshi

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

A new RCCS with passive safety features consists of two continuous closed regions. One is a region surrounding RPV. The other is a cooling region with heat transferred to the ambient air. The new RCCS needs no electrical or mechanical driving devices. We started experiment research with using a scaled-down test section. Three experimental cases under different emissivity conditions were performed. We used Monte Carlo method to evaluate the contribution of radiation to the total heat released from the heater. As a result, after the heater wall was painted black, the contribution of radiation to the total heat could be increased to about 60%. A high emissivity of RPV surface is very effective to remove more heat from the reactor. A high emissivity of the cooling part wall is also effective because it not only increases the radiation emitted to the ambient air, but also may increase the temperature difference among the walls and enhance the convection heat transfer in the RCCS.

633 (Records 1-20 displayed on this page)