Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2024-064, 118 Pages, 2025/06
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2023. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted from FY2019 to FY2023. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We developed sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training. In particular, we applied the extremely small amount analysis (ICP-MS/MS), which has recently been successful in the fields of analytical chemistry and radiochemistry, to the nuclear field. This method allows high-accuracy analysis without pretreatment to isolate the nuclide to be measured. The separation pretreatment can be skipped and a rapid analysis process can be established.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2023-025, 117 Pages, 2024/03
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2022. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training.
Kazama, Hiroyuki; Konashi, Kenji*; Suzuki, Tatsuya*; Koyama, Shinichi; Maeda, Koji; Sekio, Yoshihiro; Onishi, Takashi; Abe, Chikage*; Shikamori, Yasuyuki*; Nagai, Yasuyoshi*
Journal of Analytical Atomic Spectrometry, 38(8), p.1676 - 1681, 2023/07
Times Cited Count:5 Percentile:60.75(Chemistry, Analytical)Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2022-034, 135 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2021. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training. In particular, we will apply the extremely small amount analysis (ICP-MS/MS), which has recently been successful …
Do, V. K.; Furuse, Takahiro; Ota, Yuki; Iwahashi, Hiroyuki; Hirosawa, Takashi; Watanabe, Masahisa; Sato, Soichi
Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5631 - 5640, 2022/12
Times Cited Count:5 Percentile:60.29(Chemistry, Analytical)Sn is one of the long-lived fission products that might have been released into the environment after the Fukushima nuclear accident in Japan in 2011. The presence of radionuclides must be monitored for the proper treatment of wastes obtained from decommissioning accident-related nuclear facilities and the surrounding environment. In the work, we propose a reliable method for verifying the presence of
Sn in construction materials by combining the HCl-free solid phase extraction on TEVA resin and a selective measurement by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The method has been optimized and characterized step by step. More than 95% of chemical recovery was achieved for Sn from typical concrete matrixes. The interference caused by an isobar
Te and possible polyatomic interferences from matrixes were effectively suppressed by the developed chemical separation and the tandem MS/MS configuration. The total decontamination factor for the Te interference was of the order of 10
. The estimated method detection limit for
Sn in concrete as measured at m/z = 160 was 12.1 pg g
, which is equivalent to 6.1 mBq g
.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2021-056, 98 Pages, 2022/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2020. The fuel debris retrieved from the Fukushima Daiichi Nuclear Power Station (1F) is analyzed in the second building of the Okuma Analysis and Research Center. The characteristics of fuel debris, such as the mixture of nuclear fuel, reactor components, and concrete, are not clear, and its analysis will be the first attempt in the world. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation/analysis process required for chemical analysis.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2020-064, 95 Pages, 2021/02
JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2019.
Ota, Yuki; Do, V. K.; Furuse, Takahiro; Sano, Yuichi; Iwahashi, Hiroyuki; Homma, Shunta; Ichijo, Yurina; Kurosawa, Kiyoko*; Endo, Tsubasa*; Motoki, Yoshiaki*; et al.
no journal, ,
no abstracts in English
Kazama, Hiroyuki; Sekio, Yoshihiro; Maeda, Koji; Koyama, Shinichi; Suzuki, Tatsuya*; Konashi, Kenji*; Abe, Chikage*; Nagai, Yasuyoshi*
no journal, ,
Triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) is an attractive technique to perform rapid and highly sensitive analysis. The collision/reaction cell (CRC) technology incorporated in ICP-MS/MS is an available option to eliminate isobaric interference, being expected to discriminate actinide nuclides involved in fuel debris. Meanwhile, in order to discriminate against these isobaric interferences using ICP-MS/MS, it is necessary to understand actinide gas-phase reaction behavior associated with the injection of reaction gases into the CRC. In the present work, the actinide molecular ion formations correlating with the excitation energy from the ground state of actinide monoatomic cation to their reactive state (5f6d
) were investigated by injection of reaction gases into CRC. The obtained correlations allow us to predict the reaction behaviors towards mutual discrimination of actinide series using ICP-MS/MS.
Banjarnahor, I. M.; Do, V. K.; Motoki, Yoshiaki*; Ota, Yuki; Iwahashi, Hiroyuki; Kurosawa, Kiyoko*; Furuse, Takahiro
no journal, ,
Pure beta-emitting Se is one of the long-lived fission products that might release to the environment due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (FDNPP). A reliable and simple determination method of the radionuclide is important for proceeding the disposal of the wastes obtained from the decommissioning of FDNPP. We developed a new analytical procedure for the measurement of
Se by inductively coupled plasma triple quadrupole mass spectrometry (ICP-MS/MS). All interferences that potentially interfere in the measurement of
Se could be effectively removed by the chemical separation pretreatment and ICP-MS/MS. The method is tested with inactive concrete to verify the interference removal efficiency. Also, the analytical figures of merit such as detection capability etc. are reported.
Tanaka, Yasuyuki; Do, V. K.; Motoki, Yoshiaki*; Ota, Yuki; Iwahashi, Hiroyuki; Kurosawa, Kiyoko*; Furuse, Takahiro
no journal, ,
We examined the measurement method of U using triple-quadrupole inductively coupled plasma-mass spectrometry (ICP-MS/MS, Agilent 8900). The measurable mass to charge ratio (m/z) is expanded up to 275, the device can measure
U
O
O (m/z = 268) generated by the reaction with
O, which was used as a reaction gas. This mass shift mode decreased the interference from hydride of
U compared to the previously reported analytical method, which improved limit of detection of
U using ICP-MS/MS. In this presentation, the optimized measurement condition of
U measured at m/z = 268 by ICP-MS/MS is reported.
Matsueda, Makoto
no journal, ,
no abstracts in English
Kazama, Hiroyuki
no journal, ,
no abstracts in English
Kazama, Hiroyuki; Toyota, Chihiro; Onishi, Takashi; Maeda, Koji
no journal, ,
We propose a rapid analysis method for Nd using triple quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS) for quick burn-up measurement. In the conventional method, Nd-148 is used as burn-up indicator, and some complicated separation processes are required to eliminate isobaric interference from Sm. In this study, we demonstrate the discrimination of Nd/Sm using ICP-MS/MS with reaction gas for rapid Nd analysis.
Tomita, Jumpei; Takeuchi, Erina
no journal, ,
no abstracts in English
Matsueda, Makoto
no journal, ,
As an outcome of the environmental restoration of Fukushima Prefecture, this presentation reports on analytical techniques for ultra-trace amounts of radioactive iodine in the environment.
Horita, Takuma; Akimoto, Yuji*; Kikuchi, Hikaru*; Do, V. K.
no journal, ,
no abstracts in English
Furuse, Takahiro; Do, V. K.; Aita, Rena; Ota, Yuki; Murakami, Erina; Tomitsuka, Tomohiro; Sano, Yuichi; Akimoto, Yuji*; Endo, Tsubasa*; Katayama, Atsushi; et al.
no journal, ,
In order to simplify the analysis of Zr and
Mo in radioactive waste from conventional radiation measurement, we have considered analysis method combining solid-phase extraction and ICP-MS/MS. In this presentation, we report the results of a study on sequential chemical separation of Zr and Mo from Nb and sample matrix using ZR resin as a solid-phase extraction resin.
Iwasaki, Maho; Suzuki, Tatsuya*; Yamamura, Tomoo*; Konashi, Kenji*; Shikamori, Yasuyuki*; Noguchi, Shinichi
no journal, ,
no abstracts in English
Iwahashi, Hiroyuki; Do, V. K.; Furuse, Takahiro; Ota, Yuki; Homma, Shunta; Kurosawa, Kiyoko*; Motoki, Yoshiaki*; Hirosawa, Takashi
no journal, ,
The radiometric determination of beta emitting Pd (half-life of 6.5 million years) requires a multiple-step chemical separation and a time-consuming radioactive measurement. Inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) with recent technological advances in interference removal by two quadrupole mass filters and a collision/reaction cell could be an alternative for highly sensitive analysis of long-lived radionuclides. In this study, we have developed an analytical method for the determination of
Pd in concrete rubble by ICP-MS/MS combined with single-column chromatographic separation. A simplified procedure for the separation of Pd from concrete matrices was developed. The measurement condition was optimized to completely suppress the interference including the isobar
Ag and the sample matrices. The application of the developed method to radioactive concrete rubble is under consideration.