Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 197

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Iodine-129 in the Tokai Reprocessing Plant and the environment

Nakano, Masanao

Hoken Butsuri (Internet), 56(1), p.17 - 25, 2021/03

The Tokai Reprocessing Plant is the first reprocessing plant in Japan which started hot test in 1977, and had reprocessed 1140 tons of spent nuclear fuel by May 2007. The gaseous and liquid radioactive wastes has been discharged to the environment. Since iodine-129 ($$^{129}$$I) is one of the most important nuclides for environmental impact assessment. Therefore, $$^{129}$$I in the exhaust and effluent has been controlled, and a precise analysis method of $$^{129}$$I in the environmental samples was developed, and the concentration of 129I in the environment was investigated. This report presents an overview of these activities. Not limited to $$^{129}$$I on reprocessing facilities, it is essential for nuclear operators to reduce the amount released to the environment in the spirit of ALARA, and to continuously develop the further upgrading environmental monitoring methods and evaluation methods in order to foster a sense of safety and security among residents living in the vicinity of the facilities.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-031, 69 Pages, 2021/01

JAEA-Review-2020-031.pdf:4.22MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification" conducted in FY2019.

Journal Articles

Radiation-induced effects on the extraction properties of hexa-$$n$$-octylnitrilo-triacetamide (HONTA) complexes of americium and europium

Toigawa, Tomohiro; Peterman, D. R.*; Meeker, D. S.*; Grimes, T. S.*; Zalupski, P. R.*; Mezyk, S. P.*; Cook, A. R.*; Yamashita, Shinichi*; Kumagai, Yuta; Matsumura, Tatsuro; et al.

Physical Chemistry Chemical Physics, 23(2), p.1343 - 1351, 2021/01

 Times Cited Count:0 Percentile:0.02(Chemistry, Physical)

The candidate An(III)/Ln(III) separation ligand hexa-$$n$$-octylnitrilo-triacetamide (HONTA) was irradiated under envisioned SELECT (Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation) process conditions using a solvent test loop in conjunction with cobalt-60 gamma irradiation. We demonstrate that HONTA undergoes exponential decay with increasing gamma dose to produce a range of degradation products which have been identified and quantified by HPLC-ESI-MS/MS techniques. The combination of HONTA destruction and degradation product ingrowth, particularly dioctylamine, negatively impacts the extraction and back-extraction of both americium and europium ions. The loss of HONTA was attributed to its reaction with the solvent (${it n}$-dodecane) radical cation of ${it k}$(HONTA + R$$^{.+}$$) = (7.61 $$pm$$ 0.82) $$times$$ 10$$^{9}$$ M$$^{-1}$$ s$$^{-1}$$ obtained by pulse radiolysis techniques. However, when this ligand is bound to either americium or europium ions, the observed ${it n}$-dodecane radical cation kinetics increase by over an order of magnitude. This large reactivity increase to additional reaction pathways occurring upon metal-ion binding. Lastly nanosecond time-resolved measurements showed that both direct and indirect HONTA radiolysis yielded the short-lived ($$<$$100 ns) HONTA radical cation as well as a longer-lived ($$mu$$s) HONTA triplet excited state. These HONTA species are important precursors to the suite of HONTA degradation products observed.

JAEA Reports

Analysis of debris samples of Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station (Translated document)

Task Force on Research Strategy for Debris of Fukushima Daiichi Nuclear Power Station

JAEA-Review 2020-055, 171 Pages, 2020/12

JAEA-Review-2020-055.pdf:5.66MB

Design, planning and control of debris-related processes, namely retrieval, storage management, processing and disposal of the debris, are required for the safe and steady decommissioning of Fukushima Daiichi Nuclear Power Station (1F). Status inside primary containment vessel of 1F must be known by the PCV investigation and fuel debris sample analysis. Continuous updating and improvement of the process design are important through ascertainment of the cause of the accident. The roadmap for the 1F decommissioning have shown the milestone of commencement of trial retrieval of fuels debris within 2021, which indicates the analysis of fuel debris sample begin in earnest. This report recommends required debris analysis in relation with issues for the retrieval, storage management, processing and disposal, and ascertainment of the cause of the 1F accident. Practical analysis plan is expected to be prepared based on this report.

Journal Articles

Study on the mechanism of radiolytic degradation of an extractant for minor actinides separation

Toigawa, Tomohiro; Murayama, Rin*; Kumagai, Yuta; Yamashita, Shinichi*; Suzuki, Hideya; Ban, Yasutoshi; Matsumura, Tatsuro

UTNL-R-0501, p.24 - 25, 2020/12

This report summarizes the results obtained in FY2019 at Electron Linac Facility of University of Tokyo. The radiolysis process of a diglycolamide extractant, which is expected to be used in the separation process of minor actinides (MA), in dodecane and octanol solutions was investigated by pulse radiolysis. As a result, it was suggested that by adding alcohol, the decomposition process of the diglycolamide extractant was different from the decomposition processes in the single solvent of dodecane considered that the decomposition occurred via a radical cation species of the extractant.

Journal Articles

Frontline of R&D for decommissioning and waste disposal, 1; R&D for processing and disposal of low-level radioactive waste and closure of uranium mine

Tsuji, Tomoyuki; Sugitsue, Noritake; Sato, Fuminori; Matsushima, Ryotatsu; Kataoka, Shoji; Okada, Shota; Sasaki, Toshiki; Inoue, Junya

Nihon Genshiryoku Gakkai-Shi, 62(11), p.658 - 663, 2020/11

no abstracts in English

Journal Articles

Phase-field model for crystallization in alkali disilicate glasses; Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$

Kawaguchi, Munemichi; Uno, Masayoshi*

Journal of the Ceramic Society of Japan, 128(10), p.832 - 838, 2020/10

 Times Cited Count:0 Percentile:0.01(Materials Science, Ceramics)

This study developed phase-field method (PFM) technique in oxide melt system by using a new mobility coefficient ($$L$$). The crystal growth rates ($$v_0$$) obtained by the PFM calculation with the constant $$L$$ were comparable to the thermodynamic driving force in normal growth model. The temperature dependence of the $$L$$ was determined from the experimental crystal growth rates and the $$v_0$$. Using the determined $$L$$, the crystal growth rates ($$v$$) in alkali disilicate glasses, Li$$_2$$O-2SiO$$_2$$, Na$$_2$$O-2SiO$$_2$$ and K$$_2$$O-2SiO$$_2$$ were simulated. The temperature dependence of the $$v$$ was qualitatively and quantitatively so similar that the PFM calculation results demonstrated the validity of the $$L$$. Especially, the $$v$$ obtained by the PFM calculation appeared the rapid increase just below the thermodynamic melting point ($$T_{rm m}$$) and the steep peak at around $$T_{rm m}$$-100 K. Additionally, as the temperature decreased, the $$v$$ apparently approached zero ms$$^-1$$, which is limited by the $$L$$ representing the interface jump process. Furthermore, we implemented the PFM calculation for the variation of the parameter $$B$$ in the $$L$$. As the $$B$$ increased from zero to two, the peak of the $$v$$ became steeper and the peak temperature of the $$v$$ shifted to the high temperature side. The parameters $$A$$ and $$B$$ in the $$L$$ increased exponentially and decreased linearly as the atomic number of the alkali metal increased due to the ionic potential, respectively. This calculation revealed that the $$A$$ and $$B$$ in the $$L$$ were close and reasonable for each other.

JAEA Reports

Assessment report on research and development activities in FY2019; Activity "Research and development on high temperature gas-cooled reactor and related heat application technology" (Interim report)

Sector of Fast Reactor and Advanced Reactor Research and Development

JAEA-Evaluation 2020-001, 128 Pages, 2020/08

JAEA-Evaluation-2020-001.pdf:7.44MB

Japan Atomic Energy Agency consulted with the "Evaluation Committee of Research Activities for High Temperature Gas-cooled Reactor (hereinafter referred to as "HTGR") and Related Hydrogen Production Technology" (hereinafter referred to as "Evaluation Committee"), which consists of specialists in the fields of the evaluation subjects of high temperature gas-cooled reactor and related heat application technology, for interim assessment in the 3rd Mid-and Long-Term Plan about the relevance of the management and research activities of the HTGR and related application technology during the period from April 2017 to March 2020. As a result, three members of the Evaluation Committee concluded a score of "S", and seven members of the Evaluation Committee concluded a score of "A". The interim assessment to research and development activities from April 2017 to March 2020 was concluded a score of "A". In addition, the Evaluation Committee recommended that the judgement to move to the construction phase of the HTTR-heat utilization test plant be made after 2 years, after the HTTR will be restarted and the thermal load fluctuation tests using HTTR will be carried out. This report lists the members of the Evaluation Committee and outlines the assessment item and the review process for procedure of the assessment. The assessment report which was issued by the Evaluation Committee is attached.

Journal Articles

Corrosion property of container using hybrid material for thermal decomposition process of sulfuric acid

Ioka, Ikuo; Kuriki, Yoshiro*; Iwatsuki, Jin; Kawai, Daisuke*; Yokota, Hiroki*; Inagaki, Yoshiyuki; Kubo, Shinji

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 5 Pages, 2020/08

A thermochemical water-splitting iodine-sulfur processes (IS process) is one of candidates for the large-scale production of hydrogen using heat from solar power. Severe corrosive environment which is thermal decomposition of sulfuric acid exists in the IS process. A hybrid material with the corrosion-resistance and the ductility was made by a plasma spraying and laser treatment. The specimen had excellent corrosion resistance in the condition of 95 mass% boiling sulfuric acid. This was attributed to the formation of SiO$$_{2}$$ on the surface. The container using the hybrid material was experimentally made. The pre-oxidized container using hybrid technique was prepared for the corrosion test in boiling sulfuric acid to evaluate the corrosion characteristics of the container. There was no detaching of the surface with the weld part and the R processing. We proposed the calculation method of corrosion rate from the ions dissolved in the sulfuric acid solution after the corrosion test.

JAEA Reports

Analysis of debris samples of Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station

Task Force on Research Strategy for Debris of Fukushima Daiichi Nuclear Power Station

JAEA-Review 2020-004, 140 Pages, 2020/05

JAEA-Review-2020-004.pdf:4.22MB

Design, planning and control of debris-related processes, namely retrieval, storage management, processing and disposal of the debris, are required for the safe and steady decommissioning of Fukushima Daiichi Nuclear Power Station (1F). Status inside primary containment vessel of 1F must be known by the PCV investigation and fuel debris sample analysis. Continuous updating and improvement of the process design are important through ascertainment of the cause of the accident. The roadmap for the 1F decommissioning have shown the milestone of commencement of trial retrieval of fuels debris within 2021, which indicates the analysis of fuel debris sample begin in earnest. This report recommends required debris analysis in relation with issues for the retrieval, storage management, processing and disposal, and ascertainment of the cause of the 1F accident. Practical analysis plan is expected to be prepared based on this report.

JAEA Reports

Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-034, 59 Pages, 2020/03

JAEA-Review-2019-034.pdf:3.15MB

JAEA/CLADS, conducted the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aimed to contribute to solving problems in the field of nuclear energy represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development was promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barriers of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Analysis of microparticles generated by laser processing and development of a methodology for their nuclear identification". Although laser processing has various advantages, one well-known disadvantage is that it generates a large amount of microparticles during the processing. Therefore, the application of laser processing to decommissioning waste contaminated with radioactive materials has been hesitant because the mechanism generating the microparticles has not been fully understood. In this study, the mechanism of microparticle production by laser processing is investigated from fundamentals. Also, we develop a laser on-line principle device to examine the nuclides present in the microparticles that are produced, based on the measurement of the particle size distribution by collecting the microparticles using aerodynamic lenses.

Journal Articles

Contribution of membrane technology to hydrogen society; Development of membrane IS process

Inagaki, Yoshiyuki; Sakaba, Nariaki; Tanaka, Nobuyuki; Nomura, Mikihiro*; Sawada, Shinichi*; Yamaki, Tetsuya*

Nihon Kaisui Gakkai-Shi, 73(4), p.194 - 202, 2019/08

The thermochemical IS process is a promising hydrogen production method which can produce hydrogen in a large amount and stably with high efficiency by thermal splitting of water. Research and development on chemical reaction technology with membranes was conducted for the purpose of improving the efficiency of IS process and application of solar heat. The basic technology of ceramic membranes applied to decomposition reactions of hydrogen iodine and sulfuric acid was developed, and it is expected that the conversion rate on decomposition in each reaction can be remarkably improved. The basic technology of a cation exchange membrane applied to Bunsen reaction was developed with radiation-induced grafting technique, it is expected that the amount of iodine can be reduced to about one-fifth compared to the conventional method. These achievements are important technologies for practical use of the IS process.

Journal Articles

Research and development on membrane IS process for hydrogen production using solar heat

Myagmarjav, O.; Iwatsuki, Jin; Tanaka, Nobuyuki; Noguchi, Hiroki; Kamiji, Yu; Ioka, Ikuo; Kubo, Shinji; Nomura, Mikihiro*; Yamaki, Tetsuya*; Sawada, Shinichi*; et al.

International Journal of Hydrogen Energy, 44(35), p.19141 - 19152, 2019/07

 Times Cited Count:11 Percentile:66.42(Chemistry, Physical)

Journal Articles

R&D status of hydrogen production test using IS process test facility made of industrial structural material in JAEA

Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Tanaka, Nobuyuki; Iwatsuki, Jin; Kasahara, Seiji; Kubo, Shinji

International Journal of Hydrogen Energy, 44(25), p.12583 - 12592, 2019/05

 Times Cited Count:1 Percentile:9.04(Chemistry, Physical)

JAEA has been conducting R&D on thermochemical water-splitting hydrogen production IS process to develop one of heat applications of high-temperature gas-cooled reactor. A test facility was constructed using corrosion-resistant industrial materials to verify integrity of the IS process components and to demonstrate continuous and stable hydrogen production. The performance of components installed in each section was confirmed. Subsequently, a trial operation of integration of the processing sections was successfully carried out for 8 hours with hydrogen production rate of approximately 10 NL/h. After that, hydrogen production operation was extended to 31 hours (approximately hydrogen production rate of 20 NL/h) by introducing a corrosion-resistance pump system with a developed shaft seal technology.

Journal Articles

Module design of silica membrane reactor for hydrogen production via thermochemical IS process

Myagmarjav, O.; Tanaka, Nobuyuki; Nomura, Mikihiro*; Kubo, Shinji

International Journal of Hydrogen Energy, 44(21), p.10207 - 10217, 2019/04

 Times Cited Count:7 Percentile:56.5(Chemistry, Physical)

Journal Articles

Measurement of $$^{73}$$Ge(n,$$gamma$$) cross sections and implications for stellar nucleosynthesis

Lederer-Woods, C.*; Battino, U.*; Ferreira, P.*; Gawlik, A.*; Kimura, Atsushi; n_TOF Collaboration*; 128 of others*

Physics Letters B, 790, p.458 - 465, 2019/03

 Times Cited Count:2 Percentile:27.99(Astronomy & Astrophysics)

Journal Articles

Model intercomparison of atmospheric $$^{137}$$Cs from the Fukushima Daiichi Nuclear Power Plant accident; Simulations based on identical input data

Sato, Yosuke*; Takigawa, Masayuki*; Sekiyama, Tsuyoshi*; Kajino, Mizuo*; Terada, Hiroaki; Nagai, Haruyasu; Kondo, Hiroaki*; Uchida, Junya*; Goto, Daisuke*; Qu$'e$lo, D.*; et al.

Journal of Geophysical Research; Atmospheres, 123(20), p.11748 - 11765, 2018/10

 Times Cited Count:11 Percentile:70.43(Meteorology & Atmospheric Sciences)

A model intercomparison of the atmospheric dispersion of $$^{137}$$Cs emitted following the Fukushima Daiichi Nuclear Power Plant accident was conducted by 12 models to understand the behavior of $$^{137}$$Cs in the atmosphere. The same meteorological data, horizontal grid resolution, and an emission inventory were applied to all the models to focus on the model variability originating from the processes included in each model. The multi-model ensemble captured 40% of the observed $$^{137}$$Cs events, and the figure-of-merit in space for the total deposition of $$^{137}$$Cs exceeded 80. Our analyses indicated that the meteorological data were most critical for reproducing the $$^{137}$$Cs events. The results also revealed that the differences among the models were originated from the deposition and diffusion processes when the meteorological field was simulated well. However, the models with strong diffusion tended to overestimate the $$^{137}$$Cs concentrations.

Journal Articles

Demonstration of $$gamma$$-ray pipe-monitoring capabilities for real-time process monitoring safeguards applications in reprocessing facilities

Rodriguez, D.; Tanigawa, Masafumi; Nishimura, Kazuaki; Mukai, Yasunobu; Nakamura, Hironobu; Kurita, Tsutomu; Takamine, Jun; Suzuki, Satoshi*; Sekine, Megumi; Rossi, F.; et al.

Journal of Nuclear Science and Technology, 55(7), p.792 - 804, 2018/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Nuclear material in reprocessing facilities is safeguarded by random sample verification with additional continuous monitoring applied to solution masses and volume in important tanks to maintain continuity-of-knowledge of process operation. Measuring the unique $$gamma$$ rays of each solution as the material flows through pipes connecting all tanks and process apparatuses could potentially improve process monitoring by verifying the compositions in real time. We tested this $$gamma$$ ray pipe-monitoring method using plutonium-nitrate solution transferred between tanks at the PCDF-TRP. The $$gamma$$ rays were measured using a lanthanum-bromide detector with a list-mode data acquisition system to obtain both time and energy of $$gamma$$-ray. The analysis and results of this measurement demonstrate an ability to determine isotopic composition, process timing, flow rate, and volume of solution flowing through pipes, introducing a viable capability for process monitoring safeguards verification.

Journal Articles

The Development status of Generation IV reactor systems, 2; High temperature gas-cooled reactor (HTGR)

Kunitomi, Kazuhiko; Nishihara, Tetsuo; Yan, X.; Tachibana, Yukio; Shibata, Taiju

Nihon Genshiryoku Gakkai-Shi, 60(4), p.236 - 240, 2018/04

High temperature gas-cooled reactor (HTGR) is a graphite-moderated and helium-gas-cooled thermal-neutron reactor that has excellent safety features and can produce high temperature heat of 950$$^{circ}$$C. It is expected to use for various heat applications as well as for electricity generation to reduce carbon dioxide emission. Japan Atomic Energy Agency (JAEA) has been promoted research and development to demonstrate the HTGR safety features using High temperature engineering test reactor (HTTR) and it's heat application. JAEA are also conducting the action to international deployment of Japanese HTGR technologies in cooperation with industries-government-academia. This paper reports status of the research and development of HTGR and domestic and international collaborations.

Journal Articles

Application of Bayesian approaches to nuclear reactor severe accident analysis

Zheng, X.; Tamaki, Hitoshi; Shiotsu, Hiroyuki; Sugiyama, Tomoyuki; Maruyama, Yu

Proceedings of Asian Symposium on Risk Assessment and Management 2017 (ASRAM 2017) (USB Flash Drive), 11 Pages, 2017/11

197 (Records 1-20 displayed on this page)