検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 11 件中 1件目~11件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

報告書

LWTF液処理系プロセスにおける操作条件の妥当性評価試験-コールド工学試験装置による確認試験-

小林 師; 村田 栄一*; 澤幡 佳和*; 斎藤 晶*

JNC TN8430 2001-002, 43 Pages, 2001/02

JNC-TN8430-2001-002.pdf:1.98MB

現在、東海再処理施設内で建設計画を進めている低放射性廃棄物処理技術開発施設(以下LWTF)の液処理系プロセスでは、低放射性廃液中の塩(NaNO3等)と放射性核種を分離し、それぞれ「硝酸塩蒸発固化体」、「スラリー蒸発固化体」として保管・貯蔵される。このプロセスにより、従来の「アスファルト固化法」に比べ、大きな減容比を得ることができる。本報では、このLWTF液処理系プロセスと同様の処理を工学規模の装置を用いて行い、過去の基礎試験結果から得られたLWTF運転上の設定値との比較を行った。その結果、LWTF液処理系プロセスにおける「ヨウ素不溶化・プレフィルタろ過工程」、「限外ろ過(I)工程」、「前処理工程」、「共沈・限外ろ過(II)工程」、「共沈・限外ろ過(III)工程」のそれぞれの工程において、LWTF運転上の設定値が妥当であることを確認した。

報告書

低レベル廃棄物処理開発施設(設計データ2); 昭和63年度貯蔵低放射性固体廃棄物の調査

稲田 栄一; 小圷 正之; 須藤 光男*; 吉田 充宏; 箕内 洋之; 岡本 哲也*; 酒井 光雄

PNC TN8450 91-006, 77 Pages, 1991/03

PNC-TN8450-91-006.pdf:2.09MB

東海事業所再処理工場等から発生した低放射性固体廃棄物のうち、難燃物、不燃物、及び一部の可燃物はドラム缶やコンテナに収納され、第一低放射性固体廃棄物貯蔵場、並びに第二低放射性固体廃棄物貯蔵場に貯蔵、保管される。これらの廃棄物を減容安定化処理することを目的とした低レベル廃棄物処理開発施設(以下LWTFという)の設計を実施しており、施設設計を進める上で処理対象廃棄物を明確にする必要が有るため本調査を実施した。調査対象は、再処理工場の運転状況を踏まえた代表的な3ケースとし、昭和62年、63年、及び平成2年度について調査することとした。本調査書は、先の昭和62年度調査と同様に昭和63年度に発生した廃棄物を対象に、ドラム缶及びコンテナに収納された低放射性固体廃棄物の種類、数量、性状等について調査を行ったものである。調査対象廃棄物は、昭和63年度にドラム缶、またはコンテナに封入された低放射性固体廃棄物とし、その種類、数量等を明らかにした。調査結果は、以下の通りであった。1,全体廃棄物の割合は、可燃物が約4%、難燃物Iが約10%、難燃物IIが約7%、不燃物が約79%であった。2,ドラム缶の最大重量は、普通ドラム缶で505kg/本(不燃物)、マルチドラム缶で

報告書

低レベル廃棄物処理開発施設(設計データ1); 昭和62年度貯蔵低放射性固体廃棄物の調査

稲田 栄一; 小圷 正之; 須藤 光男*; 吉田 充宏; 箕内 洋之; 岡本 哲也*; 酒井 光雄

PNC TN8450 91-005, 103 Pages, 1991/02

PNC-TN8450-91-005.pdf:2.7MB

東海事業所再処理工場等から発生した低放射性固体廃棄物のうち、難燃物、不燃物、及び一部の可燃物はドラム缶やコンテナに収納され、第一低放射性固体廃棄物貯蔵場、並びに第二低放射性固体廃棄物貯蔵場に貯蔵、保管される。これらの廃棄物を減容安定化処理することを目的とした低レベル廃棄物処理開発施設(以下LWTFという)の設計を実施しており、施設設計を進める上で処理対象廃棄物を明確にする必要が有るため本調査を実施した。調査対象は、再処理工場の運転状況を踏まえた代表的な3ケースとし、昭和62年、63年、及び平成2年度について調査することとした。本調査書は、先ず昭和62年度に発生した廃棄物を対象に、ドラム缶及びコンテナに収納された低放射性固体廃棄物の種類、数量、性状等について調査を行ったものである。調査対象廃棄物は、昭和62年度にドラム缶、またはコンテナに封入された低放射性固体廃棄物とし、その種類、数量等を明らかにした。調査結果は、以下の通りであった。1,全体廃棄物の割合は、可燃物が約9%、難燃物Iが約14%、難燃物IIが約8%、不燃物が約69%であった。2,ドラム缶の最大重量は、普通ドラム缶で325kg/本(不燃物)、マルチドラム缶で272.5kg(不燃物)であった。

口頭

東海再処理施設における低放射性廃棄物の処理技術開発,25; 焼却設備における応力腐食割れ発生原因の推定

越野 克彦; 高野 雅人; 佐藤 史紀; 齋藤 恭央

no journal, , 

本施設の焼却設備では、東海再処理施設等から発生する低放射性固体廃棄物を焼却処理する計画である。焼却対象には、塩素を含有する塩化ビニル等の難燃性の廃棄物が含まれるため、廃ガス中の塩化水素濃度等により高い耐食性を求められる箇所にはNW6022を、その他の部分にはSUS304を材料に使用している。過去、本設備のコールド試験運転時に、SUS304部に応力腐食割れが生じた。本報では、応力腐食割れの発生原因を推定するため行った試験運転の結果と、材料選定のため行った材料腐食試験の結果を合わせて報告する。

口頭

東海再処理施設における低放射性廃棄物の処理技術開発,30; Cs/Sr吸着剤の実機適用に向けた解析検討

佐藤 史紀; 片岡 頌治; 鈴木 達也*; 宮部 慎介*; 佐久間 貴志*; 白水 秀知

no journal, , 

低放射性廃棄物処理技術開発施設(LWTF)の液処理系で使用するCs及びSr吸着剤を検討している。本報では、これまでの結晶性シリコチタネート(ピュアセラム)の適応を検討したCs及びSr吸着試験の結果について、実機適用に向けて解析検討を行った。

口頭

低放射性廃液のセメント固化体からの水素生成に係る検討

佐藤 史紀; 松島 怜達; 伊藤 義之; 齋藤 恭央

no journal, , 

低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設内の各工程から発生した廃液を蒸発濃縮した低放射性濃縮廃液を処理する計画である。現在、この廃液については、核種分離(共沈・限外ろ過、Cs・Sr吸着)を実施後、硝酸根分解処理によって炭酸塩廃液とした上で、高炉セメントC種を用いて固化することを計画している。セメント固化設備の設計(安全性評価)では、固化体からの水素ガス発生量を評価する必要があるが、固化体の水素生成G値〔G(H$$_{2}$$)〕は、使用するセメント材の組成や固型化される廃液成分等によって異なる。本報では、実機で想定される組成(硝酸根の分解率)を持つ炭酸塩廃液を用いた固化体を作製した上で、$$gamma$$線照射してG(H$$_{2}$$)を測定した。

口頭

東海再処理施設における低放射性廃棄物の処理技術開発,23; 廃液内に存在する夾雑物の影響の検討

松島 怜達; 高野 雅人; 新 大軌*; 齋藤 恭央

no journal, , 

低放射性廃棄物処理技術開発施設(LWTF)は、東海再処理施設より発生する低放射性廃液および低放射性固体廃棄物を処理する施設である。ここでは、低放射性廃液の処理に伴って発生する硝酸塩廃液に対して、硝酸根を分解することで炭酸塩廃液とし、その後、セメント材を加えることで固化体とする計画であり、安定した混練に向けた検討, 設計を進めている。現在、廃液に含まれる夾雑物がセメント固化へ影響を与える可能性を考え、炭酸塩廃液に含まれると考えられる夾雑物のうち、影響の可能性がある硫酸塩及びTBPについて影響を検討した結果を報告する。

口頭

東海再処理施設における低放射性廃棄物の処理技術開発,24-2; 実規模大における炭酸塩廃液のセメント固化の検討

高橋 清文; 松島 怜達; 佐藤 史紀; 齋藤 恭央

no journal, , 

低放射性廃棄物処理技術開発施設(LWTF)における炭酸塩廃液に対するセメント固化技術開発として、高炉スラグ(BFS)及び普通ポルトランドセメント(OPC)を主成分としたセメント材の適用を検討している。本報では、実規模大で模擬廃液のセメント固化試験を行い、試験条件を変化させた際の圧縮強度への影響について検討した。

口頭

東海再処理施設における低放射性廃棄物の処理技術開発,28-2; 廃液内に存在する夾雑物の影響の検討

松島 怜達; 高橋 清文; 齋藤 恭央; 菊地 幸弘*; 新 大軌*; 白水 秀知

no journal, , 

低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設で発生した炭酸塩廃液についてセメント固化を計画している。既報にて、炭酸ナトリウム及び硝酸ナトリウムを成分とする炭酸塩廃液を模擬した廃液に対して固化試験を行うことにより、炭酸塩廃液が固化可能であることを示してきた。一方で、炭酸塩廃液には微量ながら夾雑物として硫酸ナトリウムが共存することが予想されており、その影響を調査するために、これまでに、ビーカー規模での試験より、硫酸ナトリウムが共存した際の影響がないことを確認している。本報は、実規模大での試験を実施し、硫酸ナトリウムが共存した際の影響がないことを確認し、その結果を報告するものである。廃液内の硫酸ナトリウムの有無により、混練後の試料の流動性や硬化後の試料の圧縮強度等に影響がないことから、固化体性状に与える影響はないことを確認した。

口頭

東海再処理施設における低放射性廃液の処理技術開発,20; 実機適用に向けたセメント固化体からの水素生成に係る検討

佐藤 史紀; 松島 怜達; 伊藤 義之; 齋藤 恭央

no journal, , 

東海再処理施設内の低放射性廃棄物処理技術開発施設で作製予定のセメント固化体について、放射線による水素ガス発生量を評価するため、模擬セメント固化体を作製して水素生成G値を測定した。

口頭

低放射性廃液のセメント固化体からの水素生成に係る検討

佐藤 史紀; 片岡 頌治; 松島 怜達; 照沼 知己

no journal, , 

低放射性廃棄物処理技術開発施設(LWTF)では、東海再処理施設内の各工程から発生した廃液を蒸発濃縮した低放射性濃縮廃液を処理する計画である。現在、この廃液については、核種分離(共沈・限外ろ過、Cs・Sr吸着)を実施後、硝酸根分解処理によって炭酸塩廃液とした上で、高炉セメントC種を用いて固化することを計画している。この炭酸塩廃液の固化設備の安全性評価では、固化体からの水素ガス発生量を評価する必要があるが、固化体の水素生成G値〔G(H$$_{2}$$)〕は、使用するセメント材の組成や固型化される廃液成分等によって異なる。本報では、平成30年度に引き続き、実機で想定されるセメント材と炭酸塩廃液を用いて固化体を作製した上で、$$gamma$$線照射してG(H$$_{2}$$)を測定した。

11 件中 1件目~11件目を表示
  • 1