Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya
Annals of Nuclear Energy, 214, p.111217_1 - 111217_13, 2025/05
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Tamatsukuri, Hiromu; Uchihara, Takeru*; Mitsuda, Setsuo*; Ishii, Yuta*; Nakao, Hironori*; Takehana, Kanji*; Imanaka, Yasutaka*
Physical Review B, 111(13), p.134403_1 - 134403_9, 2025/04
Times Cited Count:0Wang, Y.*; Zeng, X.-T.*; Li, B.*; Su, C.*; Hattori, Takanori; Sheng, X.-L.*; Jin, W.*
Chinese Physics B, 34(4), p.046203_1 - 046203_6, 2025/03
Times Cited Count:0Two-dimensional van der Waals ferromagnet FeGeTe
(FGT) holds a great potential for applications in spintronic devices, due to its high Curie temperature, easy tunability, and excellent structural stability in air. In this study, we have performed high-pressure neutron powder diffraction (NPD) up to 5 GPa, to investigate the evolution of its structural and magnetic properties with hydrostatic pressure. The NPD data clearly reveal the robustness of the ferromagnetism in FGT, despite of an apparent suppression by hydrostatic pressure. As the pressure increases from 0 to 5 GPa, the Curie temperature is found to decrease monotonically from 225(5) K to 175(5) K, together with a dramatically suppressed ordered moment of Fe, which is well supported by the first-principles calculations. Although no pressure-driven structural phase transition is observed up to 5 GPa, quantitative analysis on the changes of bond lengths and bond angles indicate a significant modification of the exchange interactions, which accounts for the pressure-induced suppression of the ferromagnetism in FGT.
Scaria, J.*; Pdrot, M.*; Fablet, L.*; Yomogida, Takumi; Nguyen, T. T.*; Sivry, Y.*; Catrouillet, C.*; Pradas del Real, A. E.*; Choueikani, F.*; Vantelon, D.*; et al.
Environmental Science & Technology, 59(11), p.5747 - 5755, 2025/03
Times Cited Count:0 Percentile:0.00(Engineering, Environmental)Understanding and predicting the interaction mechanisms between chromium and magnetite is of particular interest to elucidate the biogeochemical behavior of Cr in the environment and to develop optimal soil remediation and water treatment strategies. However, while the elimination of the most toxic form of (Cr(VI)) by its reduction to Cr(III) has widely been documented, elucidating the exact mechanism involved in Cr(III) sorption to magnetite has attracted less attention. This study examined the interaction of Cr(III) solution with 10 nm-sized magnetites, whose stoichiometries were carefully defined and preserved in anaerobic conditions. This study reveals the joint effects of pH and magnetite stoichiometry on Cr(III) sorption mechanism, and that Cr(III)-(hydr)oxide precipitation is not necessarily the driving process of Cr(III) elimination from solutions. These results will help predict the fate and transport of chromium, as well as developing magnetite-based chromium remediation processes.
Kaburagi, Masaaki; Miyamoto, Yuta; Mori, Norimasa; Iwai, Hiroki; Tezuka, Masashi; Kurosawa, Shunsuke*; Tagawa, Akihiro; Takasaki, Koji
Journal of Nuclear Science and Technology, 62(3), p.308 - 316, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Chung, J.-H.*; Kwangwoo, S.*; Yokoo, Tetsuya R.; Ueta, Daichi*; Imai, Masaki; Kim, H.-S.; Kiem, D. H.; Han, M. J.*; Shamoto, Shinichi
Scientific Reports (Internet), 15, p.5978_1 - 5978_10, 2025/02
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Nuclear Human Resource Development Center
JAEA-Review 2024-048, 69 Pages, 2025/01
This annual report summarizes the activities of Nuclear Human Resource Development Center(NuHRDeC) of Japan Atomic Energy Agency (JAEA) in the fiscal year (FY) 2023. In FY 2023, in addition to the regular training programs at NuHRDeC, we actively organized special training courses responding to the external training needs, cooperated with universities, offered international training courses for Asian countries, and promoted activities of the Japan Nuclear Human Resource Development Network (JN-HRD.net) and the human resource development concierge. Regular domestic training programs; training courses for radioisotopes and radiation engineers, nuclear energy engineers and national qualification examinations, were conducted as scheduled inthe annual plan. We also delivered training for other organizations outside the JAEA. We continued cooperative activities with universities, such as acceptance of postdoctoral researchers, and activities in line with the cooperative graduate school system, including the acceptance of students from Nuclear Professional School, the University of Tokyo. Furthermore, joint course among seven universities was successfully held by utilizing remote education system. The joint course and the intensive summer course and nuclear fuel cycle training were conducted as part of the collaboration network with universities. The Instructor Training Program (ITP) under the contract with Ministry of Education, Culture, Sports, Science and Technology, was continually offered to the ITP participating countries. As part of the ITP, the Instructor Training courses such as "Reactor Engineering Course", advanced instructor training course, and the nuclear technology seminar "Basic Radiation Knowledge for School Education" were conducted at NuHRDeC. As joint secretariat of JN-HRD.net, we steadily facilitated the network and actively held seminar, training, and facility tours for students.
Maeda, Mizuho*; Matsuda, Tatsuma*; Haga, Yoshinori; Shirasaki, Kenji*; Kimura, Noriaki*
Journal of the Physical Society of Japan, 94(2), p.024707_1 - 024707_6, 2025/01
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Doi, Daisuke
International Journal of Hydrogen Energy, 91, p.1245 - 1252, 2024/11
Times Cited Count:1 Percentile:37.00(Chemistry, Physical)Zhang, Y.-J.*; Umeda, Takemasa*; Morooka, Satoshi; Harjo, S.; Miyamoto, Goro*; Furuhara, Tadashi*
Metallurgical and Materials Transactions A, 55(10), p.3921 - 3936, 2024/10
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Idomura, Yasuhiro
Physics of Plasmas, 31(10), p.102504_1 - 102504_10, 2024/10
Times Cited Count:0 Percentile:0.00(Physics, Fluids & Plasmas)Hydrogen isotope mixing phenomena in tokamak plasmas are analyzed using global full-f gyrokinetic simulations. Model plasma parameters are chosen based on the hydrogen isotope pellet experiments on JET, in which hydrogen isotope mixing in the time scale of the energy confinement time occurred after injecting deuterium (D) pellets into hydrogen (H) plasmas. Two numerical experiments are conducted using plasma profiles before and after the D pellet injection. In both cases, turbulent fluctuations in the plasma core are characterized by ion temperature gradient driven turbulence, while in the latter case, trapped electron mode turbulence also exists in the outer region. In the former case, the density profile of bulk H ions is kept in a quasi-steady state, and the particle confinement time of bulk H ions is an order of magnitude longer than the energy confinement time. In the latter case, the density profiles of bulk H ions and pellet D ions show transient relaxation in the time scale of the energy confinement time, indicating the fast hydrogen isotope mixing. In the toroidal angular momentum balance, it is found that the hydrogen isotope mixing is driven by the toroidal field stress.
Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*
JAEA-Review 2024-011, 121 Pages, 2024/09
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Quantitative evaluation of long-term state changes of contaminated reinforced concrete considering the actual environments for rational disposal" conducted from FY2020 to FY2022. Estimating waste volume and concentration is essential for decommissioning concrete structures at the Fukushima Daiichi Nuclear Power Station.
Ding, H.*; Ito, Keita*; Endo, Yasushi*; Takanashi, Koki; Seki, Takeshi*
Journal of Physics D; Applied Physics, 57(38), p.385002_1 - 385002_10, 2024/09
Times Cited Count:2 Percentile:67.38(Physics, Applied)Zhu, L.*; He, H.*; Naeem, M.*; Sun, X.*; Qi, J.*; Liu, P.*; Harjo, S.; Nakajima, Kenji; Li, B.*; Wang, X.-L.*
Physical Review Letters, 133(12), p.126701_1 - 126701_6, 2024/09
Times Cited Count:1 Percentile:53.15(Physics, Multidisciplinary)Valika, M.*; Haidamak, T.*; Cabala, A.*; Posp
il, J.*; Bastien, G.*; Sechovsk
, V.*; Prokle
ka, J.*; Yanagisawa, Tatsuya*; Opletal, P.; Sakai, Hironori; et al.
Physical Review Materials (Internet), 8(9), p.094415_1 - 094415_9, 2024/09
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*
JAEA-Review 2024-013, 48 Pages, 2024/07
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2022. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology, National Institute of Advanced Industrial Science and Technology, and Nagaoka University of Technology as the second year of three years research project.
Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi
Journal of Nuclear Science and Technology, 61(7), p.935 - 957, 2024/07
Times Cited Count:2 Percentile:49.11(Nuclear Science & Technology)Takanashi, Koki; Seki, Takeshi*
Magune, 19(3), p.100 - 106, 2024/06
Perpendicular magnetic anisotropy of thin films currently plays an important role in spintronics as well as magnetic recording. Regarding perpendicular magnetic anisotropy, in this article, the fundamentals, the research history, and the recent research trends are reviewed, showing specific examples with perpendicular magnetization such as magnetic multilayers, ordered alloy films, rare earth-transition metal amorphous alloy films, and inhomogeneous or granular films. The physical origins for perpendicular magnetic anisotropy, including interface anisotropy due to structural symmetry breaking, magnetoelastic anisotropy due to strain, bulk-type magnetocrystalline anisotropy, and directional pair ordering of atoms, are discussed in each example.
Tuya, D.; Nagaya, Yasunobu
Nuclear Science and Engineering, 198(5), p.1021 - 1035, 2024/05
Times Cited Count:1 Percentile:27.70(Nuclear Science & Technology)In Monte Carlo neutron transport calculations for local response or deep penetration problems, some estimation of an importance function is generally required in order to improve their efficiency. In this work, a new recursive Monte Carlo (RMC) method, which is partly based on the original RMC method, for estimating an importance function for local variance reduction (i.e., source-detector type) problems has been developed. The new RMC method has been applied to two sample problems of varying degrees of neutron penetrations, namely a one-dimensional iron slab problem and a three-dimensional concrete-air problem. The biased Monte Carlo calculations with variance reduction parameters based on the obtained importance functions by the new RMC method have been performed to estimate detector responses in these problems. The obtained results are in agreement with those by the reference unbiased Monte Carlo calculations. Furthermore, the biased calculations offered an increase in efficiency on the order of 1 to 10 in terms of the figure of merit (FOM). The results also indicated that the efficiency increased as the neutron penetration became deeper.
Li, X.; Yamaji, Akifumi*; Sato, Ikken*; Yamashita, Takuya; Nagae, Yuji
Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 12 Pages, 2024/05