Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 30

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of the versatile reactor analysis code system, MARBLE3

Yokoyama, Kenji; Hazama, Taira; Taninaka, Hiroshi; Oki, Shigeo

JAEA-Data/Code 2024-007, 41 Pages, 2024/10

JAEA-Data-Code-2024-007.pdf:1.1MB

The third version of the versatile reactor analysis code system, MARBLE3, has been developed. In the development of the former version of MARBLE, object-oriented scripting language Python (Python2) had been used and then the latest version of Python (Python3) was released. However, due to its backward incompatibility, MARBLE no longer worked with Python3. For this reason, MARBLE3 has been fully modified and maintained to work with Python3. In MARBLE3, newly developed analysis codes and newly proposed calculation methods were incorporated, and the user interface was extended and solvers were reimplemented for maintainability, extensibility, and flexibility. In MARBLE3, the three-dimensional hexagonal/triangular transport code MINISTRI Ver.7 (MINISTRI7) and the three-dimensional hexagonal/triangular diffusion code D-MINISTRI are available as the new analysis codes. These codes can be used in the neutronics analysis system SCHEME and the fast reactor burnup analysis system OPRHEUS, which are the subsystems of MARBLE. In addition, the user interface of CBG, a core analysis system embedded in MARBLE, was extended so that the diffusion and transport calculation solvers for the 2-dimensional RZ system of CBG can be used on SCHEME. On the other hand, MARBLE3 has extended the functionality of the burnup calculation solver so that it can use the numerical methods proposed in the papers on the improvement of the Chebyshev rational function approximation method and the minimax polynomial approximation method. From the viewpoint of maintainability, the point reactor kinetics solver POINTKINETICS, which was introduced in MARBLE2, has been newly reworked as the KINETICS solver in MARBLE3.

JAEA Reports

Investigation of the core neutronics analysis conditions for evaluation of burn-up nuclear characteristics of the next-generation fast reactors

Takino, Kazuo; Oki, Shigeo

JAEA-Data/Code 2023-003, 26 Pages, 2023/05

JAEA-Data-Code-2023-003.pdf:1.66MB

Since next-generation fast reactors aim to achieve a higher core discharge burn-up than conventional reactors do, core neutronics design methods must be refined. Therefore, a suitable analysis condition is required for the analysis of burn-up nuclear characteristics to accomplish sufficient estimation accuracy while maintaining a low computational cost. We investigated the effect of the analysis conditions on the accuracy of estimation of the burn-up nuclear characteristics of next-generation fast reactors in terms of neutron energy groups, neutron transport theory, and spatial mesh. This study treated the following burn-up nuclear characteristics: criticality, burn-up reactivity, control rod worth, breeding ratio, assembly-wise power distribution, maximum linear heat rate, sodium void reactivity, and Doppler coefficient for the equilibrium operation cycle. As a result, it was found that the following conditions were the most suitable: 18-energy-group structure, 6 spatial meshes per assembly with diffusion approximation. Additionally, these conditions should apply to correction factors for energy group structure, spatial mesh and transport effects.

JAEA Reports

Development of the unified cross-section set ADJ2017R

Yokoyama, Kenji; Maruyama, Shuhei; Taninaka, Hiroshi; Oki, Shigeo

JAEA-Data/Code 2021-019, 115 Pages, 2022/03

JAEA-Data-Code-2021-019.pdf:6.21MB
JAEA-Data-Code-2021-019-appendix(CD-ROM).zip:435.94MB

In JAEA, several versions of unified cross-section set for fast reactors have been developed so far; we have developed a new unified cross-section set ADJ2017R, which is an improved version of the unified cross-section setADJ2017 for fast reactors. The unified cross-section set is used for reflecting information of C/E values (analysis / experiment values) obtained by integral experiment analyses in reactor core design via the cross-section adjustment methodology; the values are stored in the standard database for FBR core design. In the methodology, the cross-section set is adjusted by integrating the information such as uncertainty (covariance) of nuclear data, uncertainty of integral experiment / analysis, sensitivity of integral experiment with respect to nuclear data. ADJ2017R basically has the same performance as ADJ2017, but we conducted an additional investigation on ADJ2017 and revised the following two points. The first is to unify the evaluation method of the correlation coefficient of uncertainty caused by experiments (hereinafter referred to as the experimental correlation coefficient). Because it was found that the common uncertainty used in the evaluation of the experimental correlation coefficient was evaluated by two different methods, the experimental correlation coefficients were revised for all experimental data, and the evaluation method was unified. The second is the review of the integral experiment data used for the cross-section adjustment calculation. It was found that one of the experimental values of composition ratio after irradiation of the Am-243 sample has a problem in uncertainty evaluation because its experimental uncertainty is extremely small compared to the others. The cross-section adjustment calculation was, therefore, redone by excluding the experimental value. In the creation of ADJ2017, a total of 719 data sets were analyzed and evaluated, and eventually adopted 620 integral experimental data sets. In contrast, a total of 61

Journal Articles

A Design study on a mixed oxide fuel sodium-cooled fast reactor core partially loading highly concentrated MA-containing metal fuel

Ohgama, Kazuya; Ota, Hirokazu*; Oki, Shigeo; Iizuka, Masatoshi*

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 9 Pages, 2019/05

Journal Articles

A Validation study of a neutronics design methodology for fast reactors using reaction rate distribution measurements in the prototype fast reactor Monju

Ohgama, Kazuya; Takegoshi, Atsushi; Katagiri, Hiroki*; Hazama, Taira

Proceedings of 2019 International Congress on Advances in Nuclear Power Plants (ICAPP 2019) (Internet), 8 Pages, 2019/05

Journal Articles

Model verification and validation procedure for a neutronics design methodology of next generation fast reactors

Ohgama, Kazuya; Ikeda, Kazumi*; Ishikawa, Makoto; Kan, Taro*; Maruyama, Shuhei; Yokoyama, Kenji; Sugino, Kazuteru; Nagaya, Yasunobu; Oki, Shigeo

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

Journal Articles

Design study of a 750 MWe Japan sodium-cooled fast reactor with metal fuel

Ohgama, Kazuya; Ota, Hirokazu*; Ikusawa, Yoshihisa; Oki, Shigeo; Ogata, Takanari*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 6 Pages, 2017/04

Journal Articles

Tradeoff analysis of metal-fueled fast reactor design concepts

Stauff, N. E.*; Ohgama, Kazuya; Aliberti, G.*; Oki, Shigeo; Kim, T. K.*

Proceedings of 2017 International Congress on Advances in Nuclear Power Plants (ICAPP 2017) (CD-ROM), 10 Pages, 2017/04

JAEA Reports

Development of the versatile reactor analysis code system, MARBLE2

Yokoyama, Kenji; Jin, Tomoyuki; Hirai, Yasushi*; Hazama, Taira

JAEA-Data/Code 2015-009, 120 Pages, 2015/07

JAEA-Data-Code-2015-009.pdf:1.93MB

The second version of the versatile reactor analysis code system, MARBLE2, has been developed. A lot of new functions have been added inMARBLE2 by using the base technology developed in the first version (MARBLE1). Introducing the remaining functions of the conventional code system (JOINT-FR and SAGEP-FR), MARBLE2 enables one to execute almost all analysis functions of the conventional code system with the unified user interfaces of its subsystem, SCHEME. In particular, the sensitivity analysis functionality is available in MARBLE2. On the other hand, new built-in solvers have been developed, and existing ones have been upgraded. Furthermore, some other analysis codes and libraries developed in JAEA have been consolidated and prepared in SCHEME. In addition, several analysis codes developed in the other institutes have been additionally introduced as plug-in solvers. Consequently, $$gamma$$-ray transport calculation and heating evaluation become available. As for another subsystem, ORPHEUS, various functionality updates and speed-up techniques have been applied based on user experience of MARBLE1 to enhance its usability.

Journal Articles

Neutronics design of the low aspect ratio tokamak reactor, VECTOR

Nishitani, Takeo; Yamauchi, Michinori*; Nishio, Satoshi; Wada, Masayuki*

Fusion Engineering and Design, 81(8-14), p.1245 - 1249, 2006/02

 Times Cited Count:14 Percentile:67.00(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Proceedings of the 11th International Workshop on Ceramic Breeder Blanket Interactions; December 15 - 17, 2003, Tokyo, Japan

Enoeda, Mikio

JAERI-Conf 2004-012, 237 Pages, 2004/07

JAERI-Conf-2004-012.pdf:44.1MB

This report is the Proceedings of "the Eleventh International Workshop on Ceramic Breeder Blanket Interactions" which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li$$_{2}$$TiO$$_{3}$$ and other breeders, fabrication technology developments and characterization of the Li$$_{2}$$TiO$$_{3}$$ and Li$$_{4}$$SiO$$_{4}$$ pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li$$_{2}$$TiO$$_{3}$$ and Li$$_{4}$$SiO$$_{4}$$ pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system.

JAEA Reports

Experimental study on accelerator driven subcritical reactor, JAERI's nuclear research promotion program, H12-031 (Contract research)

Shiroya, Seiji*; Misawa, Tsuyoshi*; Unesaki, Hironobu*; Ichihara, Chihiro*; Kobayashi, Keiji*; Nakamura, Hiroshi*; Shin, Kazuo*; Imanishi, Nobutsugu*; Kanazawa, Satoshi*; Mori, Takamasa

JAERI-Tech 2004-025, 93 Pages, 2004/03

JAERI-Tech-2004-025.pdf:6.69MB

In view of the future plan of Research Reactor Institute, Kyoto University, the present study consisted of (1) the transmission experiments of high energy neutrons through materials, (2) experimental simulation of ADSR using the Kyoto University Critical Assembly(KUCA), and (3) conceptual neutronics design study on KUR type ADSR using the MCNP-X code. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR, which is indispensable to promote the study on ADSR, was obtained both theoretically and experimentally. For the realization of ADSR, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable (1) to compile the more precise nuclear data for the wide energy range, (2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement, and (3) to develop neutronics calculation tools which take into account the neutron generation process by the spallation reaction and the delayed neutron behavior.

Journal Articles

Current status of the AGS spallation target experiment

Nakashima, Hiroshi; Takada, Hiroshi; Kasugai, Yoshimi; Meigo, Shinichiro; Maekawa, Fujio; Kai, Tetsuya; Konno, Chikara; Ikeda, Yujiro; Oyama, Yukio; Watanabe, Noboru; et al.

Proceedings of 6th Meeting of the Task Force on Shielding Aspects of Accelerators, Targets and Irradiation Facilities (SATIF-6), (OECD/NEA No.3828), p.27 - 36, 2004/00

no abstracts in English

Journal Articles

Development of supercritical pressure water cooled solid breeder blanket in JAERI

Akiba, Masato; Ishitsuka, Etsuo; Enoeda, Mikio; Nishitani, Takeo; Konishi, Satoshi

Purazuma, Kaku Yugo Gakkai-Shi, 79(9), p.929 - 934, 2003/09

no abstracts in English

JAEA Reports

Core neutronics module and database access module for intelligent reactor design system (IRDS)

Kugo, Teruhiko; Tsuchihashi, Keiichiro*; Nakakawa, Masayuki; Ido, Masaru*

JAERI-Data/Code 2000-011, p.138 - 0, 2000/02

JAERI-Data-Code-2000-011.pdf:7.41MB

no abstracts in English

JAEA Reports

Multi-dimensional design window search system using neural networks in reactor core design

Kugo, Teruhiko; Nakakawa, Masayuki

JAERI-Data/Code 2000-004, p.97 - 0, 2000/02

JAERI-Data-Code-2000-004.pdf:10.51MB

no abstracts in English

Journal Articles

Application of neural network to multi-dimensional design window search in reactor core design

Kugo, Teruhiko; Nakagawa, Masayuki

Journal of Nuclear Science and Technology, 36(4), p.332 - 343, 1999/04

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Applicability of design window search procedure using neural network to neutronics

Kugo, Teruhiko; Nakagawa, Masayuki

Proc. of Int. Conf. on the Phys. of Nucl. Sci. and Technol., 1, p.704 - 711, 1998/00

no abstracts in English

Journal Articles

Development of intelligent code system to support conceptual design of nuclear reactor core

Kugo, Teruhiko; Nakagawa, Masayuki;

Journal of Nuclear Science and Technology, 34(8), p.760 - 770, 1997/08

 Times Cited Count:2 Percentile:22.84(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

SRAC95; General purpose neutronics code system

Okumura, Keisuke; ;

JAERI-Data/Code 96-015, 445 Pages, 1996/03

JAERI-Data-Code-96-015.pdf:12.94MB

no abstracts in English

30 (Records 1-20 displayed on this page)