Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Yamamoto, Kazuyoshi; Kumada, Hiroaki; Yamamoto, Tetsuya*; Matsumura, Akira*
Nihon Genshiryoku Gakkai Wabun Rombunshi, 3(2), p.193 - 199, 2004/06
To investigate the possibility of experimental approach for dose evaluation using a realistic phantom that faithfully reproduced the shape of a head, this research considered the manufacture of a patient's realistic phantom and the reappearance of actual medical irradiation conditions. We selected the rapid prototyping technology to produce the realistic phantom from the Computed Tomography (CT) imaging. This phantom was irradiated under the same clinical irradiation condition of this patient, and the thermal neutron distribution on the brain surface was measured in detail. Several subjects on material and data conversion in the production of realistic phantom were mentioned. As a result of reproducing medical irradiation using the realistic phantom, the maximum thermal neutron flux became a value about 22% lower than the surface of the actual brain. If the problems pointed out in this paper are solved, it may also be expected that it would become possible to check computational dosimetry system.
Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Matsumura, Akira*; Yamamoto, Tetsuya*; Nose, Tadao*; Nakagawa, Yoshinobu*; Kageji, Teruyoshi*; Uchiyama, Junzo
JAERI-Tech 2003-002, 49 Pages, 2003/03
no abstracts in English
Yamamoto, Kazuyoshi; Kumada, Hiroaki; Kishi, Toshiaki; Torii, Yoshiya; Endo, Kiyoshi*; Yamamoto, Tetsuya*; Matsumura, Akira*; Uchiyama, Junzo; Nose, Tadao*
JAERI-Tech 2002-092, 23 Pages, 2002/12
Thermal neutron flux is determined using the gold wires in current BNCT irradiation, so evaluation of arbitrary points after the irradiation is limited in the quantity of these detectors. In order to make up for the weakness, dose estimation of a patient is simulated by a computational dose calculation supporting system. In another way without computer simulation, a medical irradiation condition can be replicate experimentally using of realistic phantom which was produced from CT images by rapid prototyping technique. This phantom was irradiated at a same JRR-4 neutron beam as clinical irradiation condition of the patient and the thermal neutron distribution on the brain surface was measured in detail. This experimental evaluation technique using a realistic phantom is applicable to in vitro cell irradiation experiments for radiation biological effects as well as in-phantom experiments for dosimetry under the nearly medical irradiation condition of patient.
Kumada, Hiroaki; Matsumura, Akira*; Nakagawa, Yoshinobu*; Yamamoto, Tetsuya*; Yamamoto, Kazuyoshi; Torii, Yoshiya
Research and Development in Neutron Capture Therapy, p.529 - 534, 2002/09
no abstracts in English
Shibata, Yasushi*; Matsumura, Akira*; Yamamoto, Tetsuya*; Akutsu, Hiroyoshi*; Yasuda, Susumu*; Nakai, Kei*; Nose, Tadao*; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; et al.
Research and Development in Neutron Capture Therapy, p.1055 - 1060, 2002/09
We prospectively investigated the predictability of blood boron concentrations using the data obtained at the first craniotomy after infusion of a low dose of sodium undecahydroclosododecaborate (BSH). Nine patients with malignant glial tumors underwent Boron neutron capture therapy (BNCT) at the Japan Atomic Energy Research Institute (JAERI) between 1995 and 2001. In 7 patients, 1g of BSH was infused before the first tumor removal and boron concentrations were determined using prompt gamma ray analysis (PGA). Then, 12 hours before BNCT, patients were infused at a dose of 100mg/kg BSH, and the boron concentrations were determined again. The boron biodistribution data showed a biexponential pharmacokinetic profile. If the final boron concentration at 6 or 9 hours after the end of the infusion is within the 95% confidence interval of the prediction, direct prediction from biexponential fit will reduce the error of blood boron concentrations during irradiation to around 6%.
Nose, Tadao*; Matsumura, Akira*; Yamamoto, Tetsuya*; Shibata, Yasushi*; Yoshida, Fumiyo*; Akutsu, Hiroyoshi*; Yasuda, Susumu*; Matsushita, Akira*; Nakai, Kei*; Yamada, Takashi*; et al.
UTRCN-G-29, p.114 - 123, 2001/00
no abstracts in English