Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 263

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Built-in physics models and proton-induced nuclear data validation using MCNP, PHITS, and FLUKA; Impact on the shielding design for proton accelerator facilities

$c{C}$elik, Y.*; Stankovskiy, A.*; Iwamoto, Hiroki; Iwamoto, Yosuke; Van den Eynde, G.*

Annals of Nuclear Energy, 212, p.111048_1 - 111048_12, 2025/03

 Times Cited Count:0

JAEA Reports

Proceedings of the Joint Symposium on Nuclear Data and PHITS in 2023; November 15-17, 2023, Tokai Industry and Information Plaza "iVil", Tokai-mura, Ibaraki, Japan

Shigyo, Nobuhiro*; Furuta, Takuya; Iwamoto, Yosuke

JAEA-Conf 2024-002, 216 Pages, 2024/11

JAEA-Conf-2024-002.pdf:24.29MB

The 2023 Symposium on Nuclear Data was held at Tokai Industry and Information Plaza "iVil" on November 15-17, 2023. The symposium was organized by the Nuclear Data Division of the Atomic Energy Society of Japan (AESJ) in cooperation with Radiation Engineering Division of AESJ, North Kanto Branch of AESJ, Investigation Committee on Nuclear Data in AESJ, Nuclear Science and Engineering Center of Japan Atomic Energy Agency, and High Energy Accelerator Research Organization. In the symposium, tutorials "Overview of the nuclear data processing code, FRENDY version 2" was proposed and held. Two sessions of lectures and discussions were held: "Recent Topics on Nuclear Data and Particle and Heavy Ion Transport code System (PHITS)". In addition, recent research progress on experiments, nuclear theory, evaluation, benchmark, and applications were presented in the poster session. The total number of participants was 108 participants. Each oral and poster presentation was followed by an active question and answer session. This report consists of a total of 36 papers including 17 oral and 19 poster presentations.

Journal Articles

Evaluation of the sample activation at the injection dump of J-PARC 3 GeV rapid cycling synchrotron

Yamamoto, Kazami; Nakano, Hideto; Matsumoto, Tetsuro*

Proceedings of 21st Annual Meeting of Particle Accelerator Society of Japan (Internet), p.741 - 745, 2024/10

To accumulate a high-intensity beam in the Rapid Cycling Synchrotron (RCS), the H$$^{-}$$ beams from the linac converted into protons and injected into the RCS. In this process, a certain amount of the beam is not converted, and it leads to the injection dump. Since the secondary particles are constantly produced inside the dump due to this waste beam, we have studied if those secondary particles can be used as an irradiation test. In this report, we compare the results of calculations using PHITS/DCHAIN codes and measurements using a germanium-semiconductor detector after activating a bismuth-209 sample.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2024-020, 77 Pages, 2024/09

JAEA-Review-2024-020.pdf:3.34MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted from FY2020 to FY2022. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle.

Journal Articles

Evaluation of radiation dose caused by bremsstrahlung photons generated by high-energy beta rays using the PHITS and GEANT4 simulation codes

Shikaze, Yoshiaki

Journal of Nuclear Science and Technology, 61(7), p.894 - 910, 2024/07

 Times Cited Count:2 Percentile:57.39(Nuclear Science & Technology)

Among the radioactive nuclides inside the nuclear reactor buildings emitted by the Fukushima Daiichi nuclear reactor accident, high-energy beta-ray sources, such as strontium-90 and yttrium-90, generate bremsstrahlung photons in the building materials, comprising the wall, floor, and interior structure. Therefore, evaluating the radiation dose of the bremsstrahlung to the workers in the nuclear reactor building is crucial for radiation protection. The precision of the evaluation calculation of the bremsstrahlung dose was investigated by comparing the Particle and Heavy Ion Transport code System (PHITS) and the GEometry ANd Tracking (GEANT4) simulation code results. In the calculation, behind various shielding plates (lead, copper, aluminum, glass, and polyethylene, with thicknesses ranging from 1.0 to 40 mm), the water cylinder was set as the evaluated material, the absorbed dose and the deposited energy spectrum by the bremsstrahlung photons were obtained, and the characteristics and differences for both simulation codes were investigated. In the comparison results of the deposited energy spectrum, the spectral shapes have consistent trends. In the energy range below several tens of keV, a peak is seen in the PHITS spectrum for the lead shielding material. In comparing the absorbed dose under various conditions of the shielding plate for generating bremsstrahlung photons, most results for both codes correlate within an $$sim$$10% difference for 2.280 MeV beta-ray sources and an $$sim$$20% difference for 0.5459 MeV beta-ray sources, except for $$sim$$30% for 20 mm thick lead. Although there were differences in some cases, the evaluation results of the two simulation codes were concluded to correlate well with the above precision.

Journal Articles

Improvement and application of muon transport models implemented in the PHITS

Abe, Shinichiro

Kaku Deta Nyusu (Internet), (138), p.24 - 31, 2024/06

Recently, muons are applied to various kinds of research fields, and the development of muon nuclear data is considered. The model for negative muon capture reaction implemented in PHITS has been underestimate the measured data for productions of secondary light particles. We applied the surface coalescence model (SCM) to the JQMD model and implemented the effect of meson exchange current (MEC) in the excitation function. The SCM improved productions of light complex particles, and the consideration of the MEC process in the excitation function improved productions of high energy nucleons. The improved model was applied to the soft error simulation. It was found that SEU event cross sections increase about 10 $$sim$$ 50% when the negative muon stop around the memory array.

Journal Articles

Production rates of long-lived radionuclides $$^{10}$$Be and $$^{26}$$Al under direct muon-induced spallation in granite quartz and its implications for past high-energy cosmic ray fluxes

Sakurai, Hirohisa*; Kurebayashi, Yutaka*; Suzuki, Soichiro*; Horiuchi, Kazuho*; Takahashi, Yui*; Doshita, Norihiro*; Kikuchi, Satoshi*; Tokanai, Fuyuki*; Iwata, Naoyoshi*; Tajima, Yasushi*; et al.

Physical Review D, 109(10), p.102005_1 - 102005_18, 2024/05

 Times Cited Count:0 Percentile:0.00(Astronomy & Astrophysics)

Secular variations of galactic cosmic rays (GCRs) are inseparably associated with the galactic activities and should reflect the environments of the local galactic magnetic field, interstellar clouds, and nearby supernova remnants. The high-energy muons produced in the atmosphere by high-energy GCRs can penetrate deep underground and generate radioisotopes in the rock. As long lived radionuclides such as $$^{10}$$Be and $$^{26}$$Al have been accumulating in these rocks, concentrations of $$^{10}$$Be and $$^{26}$$Al can be used to estimate the long-term variations in high-energy muon yields, corresponding to those in the high-energy GCRs over a few million years. This study measured the production cross sections for muon induced $$^{10}$$Be and $$^{26}$$Al by irradiating positive muons with the momentum of 160 GeV/c on the synthetic silica plates and the granite core at the COMPASS experiment line in CERN SPS. In addition, it the contributions of the direct muon spallation reaction and the nuclear reactions by muon-induced particles on the production of long lived radionuclides in the rocks were clarified.

Journal Articles

Simulation of predicted effects of decontamination and cultivation activities on reduction of air dose rates using Monte Carlo method

Kim, M.; Yoshimura, Kazuya; Sakuma, Kazuyuki; Malins, A.*; Abe, Tomohisa; Nakama, Shigeo; Machida, Masahiko; Saito, Kimiaki

Kankyo Hoshano Josen Gakkai-Shi, 12(2), p.39 - 53, 2024/04

More than ten years have passed since the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. But with the progress of decontamination, the evacuation order has been lifted and the return of residents is still ongoing. Under these circumstances, in order to quantitatively evaluate the effect of decontamination activities and cultivation on air dose rate reduction, a detailed environmental model was constructed using 3D-ADRES for a real area located in the Okuma town, Fukushima prefecture. Monte Carlo simulations were performed using the model to calculate realistic distributions of radioactive Cs based on measurement results and air dose rates reflecting changes over time. As a result, the distribution of air dose rates at 100 cm above ground level in the target area according to decontamination and cultivation activities was calculated. The calculated air dose rates reproduced the measured values well, and were confirmed to be appropriate as a method for evaluating the effects of decontamination and cultivation activities. This method is expected to serve as a reference for further decontamination management measures to reduce the air dose rate in the difficult-to-return zone, where entry is still restricted.

Journal Articles

Simulation of cosmic ray induced soft errors using PHITS

Abe, Shinichiro

CROSS T&T, (76), p.39 - 43, 2024/02

Non-destructive faults (the so-called soft errors) in microelectronics caused by cosmic rays have been recognized as a serious reliability problem. To guarantee the reliability of microelectronic devices, it is necessary to evaluate the soft error rate. We have developed some technics for the soft error simulation using PHITS code. We have also developed the terrestrial SER estimation methodology based on simulation coupled with one-time neutron irradiation testing. These results will be reported as the explanatory article in the journal of CROSS T&T published by the Comprehensive Research Organization for Science and Society (CROSS).

Journal Articles

Processing of JENDL-5 photonuclear sublibrary

Konno, Chikara

JAEA-Conf 2023-001, p.143 - 146, 2024/02

I modified NJOY2016.67 to produce photonuclear ACE files which can be used in MCNP6.2 and PHITS3.27 and produced the ACE file of the JENDL-5 photonuclear sub-library. Simple test calculations with the produced ACE file supported that the produced ACE file had no serious problems.

Journal Articles

Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX)

Hizukuri, Kyoko*; Fujibuchi, Toshio*; Han, D.*; Arakawa, Hiroyuki*; Furuta, Takuya

Radiological Physics and Technology, 13 Pages, 2024/00

One of the radiation protection measures for medical personnel engaged in X-ray fluoroscopy is the use of radiation-protective plates and a simulation tool to evaluate effect of the plates is desired. Monte Carlo simulation has an advantage of being able to accurately calculate the interaction between radiations and various objects present in the X-ray room. However, Monte Carlo simulation has a disadvantage of being computationally time-consuming. Therefore, we developed a new simplified method to calculate the dose distribution in a short time with the presence of protective plates using pre-computed directional vectors (SCV). Using the Monte Carlo code PHITS, we simulated the ambient dose equivalent distribution the X-ray fluoroscopy room without the presence of protective plates. Assuming the dose at each voxel was all contributed from radiations in the direction indicated by the directional vector, the shielding effect of the protective plates for the dose at the voxel was determined whether the line toward backtrace of the directional vector has a intersect with the protective plate or not. With SCV, the computational time for the whole dose distribution with the presence of a protective plate was reduced approximately 1/6000 of the full PHITS simulation keeping the good accuracy to evaluate the effect of the plate.

Journal Articles

Simulated performance evaluation of d-Be compact fast neutron source

Nakayama, Shinsuke

Journal of Nuclear Science and Technology, 60(12), p.1447 - 1453, 2023/12

 Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)

The d+Be neutron source is a candidate for transportable neutron source for on-site nondestructive inspection of infrastructure facilities such as bridges, tunnels and so on. The applicability of the d+Be neutron source to a transportable fast neutron source is explored by Monte Carlo particle transport simulations with PHITS and JENDL-5. The simulation results show that by increasing the shielding thickness by about 1.5 times, it is possible to realize the d+Be neutron source with the comparable performance to another candidate, the 2.5-MeV p+Li neutron source, at lower beam energy.

Journal Articles

A Terrestrial SER Estimation Methodology Based on Simulation Coupled With One-Time Neutron Irradiation Testing

Abe, Shinichiro; Hashimoto, Masanori*; Liao, W.*; Kato, Takashi*; Asai, Hiroaki*; Shimbo, Kenichi*; Matsuyama, Hideya*; Sato, Tatsuhiko; Kobayashi, Kazutoshi*; Watanabe, Yukinobu*

IEEE Transactions on Nuclear Science, 70(8, Part 1), p.1652 - 1657, 2023/08

 Times Cited Count:2 Percentile:57.39(Engineering, Electrical & Electronic)

Single event upsets (SEUs) caused by neutrons is a reliability problem for microelectronic devices in the terrestrial environment. Acceleration tests using white neutron beam provide realistic soft error rates (SERs), but only a few facilities can provide white neutron beam in the world. If single-source irradiation applicable to diverse neutron source can be utilized for the evaluation of the SER in the terrestrial environment, it contributes to solve the shortage of beam time. In this study, we investigated the feasibility of the SER estimation in the terrestrial environment by any one of these measured data with the SEU cross sections obtained by PHITS simulation. It was found that the SERs estimated by our proposed method are within a factor of 2.7 of that estimated by the Weibull function. We also investigated the effect of simplification which reduce the computational cost in simulation to the SER estimation.

Journal Articles

Development of correction method for sample density effect on PGA

Maeda, Makoto; Segawa, Mariko; Toh, Yosuke; Endo, Shunsuke; Nakamura, Shoji; Kimura, Atsushi

Journal of Radioanalytical and Nuclear Chemistry, 332(8), p.2995 - 2999, 2023/08

 Times Cited Count:0 Percentile:0.00(Chemistry, Analytical)

Journal Articles

Development of whole-body dose assessment system for carbon ion radiotherapy; RT-PHITS for CIRT

Furuta, Takuya

Isotope News, (787), p.20 - 23, 2023/06

Carbon ion radiotherapy has an advantage over conventional radiotherapy such that its superior dose concentration on the tumor helps to reduce unwanted dose to surrounding normal tissues. Nevertheless, a little dose to normal tissues, which is a potential risk of secondary cancer, is still unavoidable. In the current dose assessment, however, only assessment around target volume is performed for the tumor control and prevention of acute radiation injury of fatal organs. We therefore developed a system called RT-PHITS for CIRT to reproduce the carbon ion radiotherapy including the production and transport of secondary particles based on treatment planning data using PHITS. Using this system, whole-body dose assessment of patients in the past carbon ion radiotherapy can be performed. By comparing the dose assessment to the epidemiologic records of the patients, the relation between dose exposure of non-target organs and incidence of side effects such as secondary cancer will be elucidated.

Journal Articles

Soft errors in semiconductor devices due to environmental radiation; Simulation of soft errors due to environmental radiations

Abe, Shinichiro

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 65(5), p.326 - 330, 2023/05

Non-destructive faults (the so-called soft errors) in microelectronics caused by environmental radiation such as neutrons and muons have been recognized as a serious reliability problem. The number of microelectronics requiring high reliability increases with the growth of the information society. Therefore, it is not realistic to evaluate the soft error rate (SER) of all microelectronics by measurement. Moreover, the evaluation of SER in the pre-manufacturing stage is sometimes required. As a result, the evaluation of SER by simulation become more important. We have developed the soft error simulation method with PHITS code. We have also simulated the neutron- and muon-induced soft errors. These results will be reported in the journal of the Atomic Energy Society of Japan (AESJ) as the explanatory article.

Journal Articles

Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

Iwamoto, Hiroki; Nakano, Keita; Meigo, Shinichiro; Satoh, Daiki; Iwamoto, Yosuke; Sugihara, Kenta; Nishio, Katsuhisa; Ishi, Yoshihiro*; Uesugi, Tomonori*; Kuriyama, Yasutoshi*; et al.

Journal of Nuclear Science and Technology, 60(4), p.435 - 449, 2023/04

 Times Cited Count:4 Percentile:48.92(Nuclear Science & Technology)

Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small NE213 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e., INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e., JENDL-4.0/HE, implemented in the particle and heavy iontransport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5$$^{circ}$$. Comparing the energy- and angle-integrated spallation neutron yields at energies of $$le$$20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.

JAEA Reports

Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; National Institute of Maritime, Port and Aviation Technology*

JAEA-Review 2022-070, 70 Pages, 2023/03

JAEA-Review-2022-070.pdf:5.27MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Research and development of the sample-return technique for fuel debris using the unmanned underwater vehicle" conducted in FY2021. The present study aims to develop a fuel debris sampling device that comprises a neutron detector with radiation resistance and enhanced neutron detection efficiency, an end-effector with powerful cutting and collection capabilities, and a manipulator under the Japan-UK joint research team. We will also develop a fuel debris sampling system that can be mounted on an unmanned vehicle. In addition, we will develop a positioning system to identify the system position, and a technique to project the counting information of optical cameras, sonar, and neutron detectors to be developed ...

Journal Articles

Photon dose rate distribution inside and outside a brachytherapy room

Sabri, A. H. A.*; Tajudin, S. M.*; Aziz, M. Z. A.*; Furuta, Takuya

Radiological Physics and Technology, 16(1), p.109 - 117, 2023/03

The spatial distributions of photon dose rates in a brachytherapy room with an Iridium-192 were simulated by using the particle and heavy ion transport code system (PHITS). A geometry of the brachytherapy room with concrete walls and a sliding lead door was reproduced by tracing the existing room in Advanced Medical and Dental Institute at the Universiti Sains Malaysia in Penang. The simulation results were confirmed by comparing to the measured results using a thermoluminescent dosimeter. The simulation study suggested that an additional layer of 3-mm thick lead at the side wall of the entrance will efficiently reduce the dose outside the entrance due to the photons leaked from the edge of the entrance. Simulation with replacing the source with Cobalt-60 was also conducted and revealed the dose level outside the room was too high compared to regulatory value in the current room configuration.

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2022-027, 85 Pages, 2022/11

JAEA-Review-2022-027.pdf:5.72MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. In this study, ETCC, a gamma-ray imaging system, was modified to be a portable device that can be used in 1F decommissioning project and can operate in high-dose environments. ETCC is the world's first gamma-ray camera capable of complete bijective imaging, the same as an optical camera. Therefore, ETCC can make general quantitative image analysis methods applicable to radiation, …

263 (Records 1-20 displayed on this page)