Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
福田 航大; 小原 徹*; 須山 賢也
Nuclear Technology, 11 Pages, 2024/00
An application of the boiling water reactor (BWR) to an offshore floating nuclear power plant (OFNP) is discussed in Japan. The BWR-type OFNP has some challenges for practical use, although it has high economic efficiency because of downsizing and simplification. One challenge is understanding reactor kinetics under conditions specific to the marine environment. This study quantitatively clarifies the total and spatial changes in power when the BWR is inclined during regular operation. Therefore, the TRAC/RELAP Advanced Computational Engine (TRACE) and Purdue Advanced Reactor Core Simulator (PARCS) codes were used to perform a three-dimensional neutronics-thermal-hydraulics-coupled transient analysis. The calculation model is based on Peach Bottom II. This study clarifies the changing trend in total and local BWR power by inclination with simplified modeling and conditions. Reasons for such changes are discussed based on changes in several thermal-hydraulic parameters. The difference in BWR power against the inclinations is small. Thus, it was implied that the BWR-type OFNP is expected to have a stable power supply capability during natural disasters. Finally, requires further studies to support the obtained conclusions are discussed.
吉本 政弘; 高橋 博樹; 原田 寛之; 地村 幹; 不破 康裕; 林 直樹; 栗山 靖敏*; 澤邊 祐希*; 畠山 衆一郎*
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.839 - 843, 2023/11
J-PARC 3GeVシンクロトロン加速器(RCS)では、加速器の安定性を監視する主要なビームモニタである、ビームロスモニタ、ビーム位置モニタ、ビーム電流モニタについて、既存システムの更新に向けた新しいビームモニタ用信号処理システムの開発を行っている。新システムは、TAGサーバーと3つの主要モニタに共通して使えるADCモジュールを組み合わせた構成になる。開発に際しての主な設計思想は、(1)J-PARCに特有の様々なビームタグ情報をTAGサーバーで集約し、タグ情報として各ADCモジュールに分配する、(2)ADCモジュールでビームモニタからの信号情報をADCでデジタル信号に変換し、FPGAにより各モニタに合わせた解析手法を切り替えながら高速解析処理を実施する、(3)ADCモジュールから約10秒程度の全ショット分の信号処理データをパッキングしてタグ情報をヘッダーに付加した解析データを定期的に出力する、また、任意の1ショット分のデータに対してタグ情報を付加したモニタデータをオンデマンドで出力する、ための2種類のフォーマットを準備する、(4)また生波形に加えて、FFT関連の解析途中のデータや、周回毎のバンチデータなどについて最新の4ショット分をADCモジュールの内部メモリに保存し、必要に応じてデータを読み出せるようにする、ことを目指した。本発表では、現在開発中の試作機によるタグ情報の読み込みとビームモニタ信号のデータ収集試験についての進捗を報告する。
仲野谷 孝充; 吉本 政弘; Saha, P. K.; 竹田 修*; 佐伯 理生二*; 武藤 正義*
Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.937 - 941, 2023/11
J-PARC 3GeVシンクロトロン(RCS: Rapid Cycling Synchrotron)では、前段加速器であるリニアックから入射した400MeVのHビームを荷電変換フォイルによりHビームに変換して、3GeVまで加速している。これまでRCSでは、HBCフォイル(Hybrid Boron mixed Carbon stripper foil)とカネカ社製のグラフェン薄膜(GTF: Graphene Thin Film)の2種類を荷電変換フォイルとして使用してきた。HBCフォイルとは100g/cm以上の厚い炭素フォイルを安定的に作製するために高エネルギー加速器研究機構(KEK)で開発された手法である。当初はKEKで作製されたフォイルを使用してきたが、2017年からは原子力機構でHBCフォイルの作製を開始し、以来これを使用している。近年、アーク蒸着法では作製が困難と言われてきた厚い純炭素フォイルの成膜に成功した。新たな試みとして、この純炭素フォイルを2023年3月からの利用運転で使用した。結果、HBCフォイルとGTFでは使用時間の経過とともに、荷電変換されずにビームダンプに廃棄されるビーム量の増加傾向が観察されたが、純炭素フォイルではこの傾向がなく、安定的に荷電変換が可能であった。本発表ではこれら3種類の荷電変換フォイルの使用状況について報告する。
山本 風海; 守屋 克洋; 沖田 英史; 山田 逸平; 地村 幹; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 山本 昌亘; 森下 卓俊; et al.
Proceedings of 68th ICFA Advanced Beam Dynamics Workshop on High Intensity and High Brightness Hadron Beams (HB2023) (Internet), p.270 - 273, 2023/10
J-PARC 3GeVシンクロトロン(RCS)は、1MWの大強度ビームを中性子実験施設および主リングシンクロトロンに供給するために運転している。これまで進めてきたビーム調整および機器改良により、当初想定よりもはるかに低いビームロス量で1MWのビーム運転を行うことが出来ている。そのため、現在のビーム出力はビームロスではなく高周波加速空胴の電源容量によって制限されている。近年、RCSグループではより少ない消費電力でビームを加速することのできる新しい構造の加速空胴の開発に成功した。この空胴によって、利用運転中に加速空胴で消費される電力を大幅に削減することが出来、さらに1MW以上の大出力での運転も可能となる。これまでの試験結果から、RCSの加速空胴を全て新しい物へ更新すれば、1.5MW以上の大出力も可能となる事が判っている。今後、中性子利用および主リングシンクロトロンの更なる成果創出のため、2MWを目標にRCSで必要な改良について検討を行った。その結果、高周波空胴の更新以外にも、高周波増幅器の増強やビームモニタの増強が必要であることが判ったため、今後順次更新を進める。
山本 風海; 山田 逸平
Proceedings of 14th International Particle Accelerator Conference (IPAC 23) (Internet), p.2339 - 2341, 2023/05
J-PARC 3GeVシンクロトロンでは、大強度陽子ビームを中性子実験施設および後段の主リングシンクロトロンに安定に供給するため、ビーム調整と高度化を行っている。近年、設計出力である1MW出力での数日間にわたる連続運転試験を行っているが、2020年の試験の結果から、6月後半以降の高温多湿な屋外環境下では、冷却水の冷却能力が低下し、加速器を安定に運転できない事が判明した。その原因を調査した結果、加速器装置を直接冷却する一次冷却水と屋外で排熱する二次冷却水の熱交換器の性能が劣化していることを突き止めた。2021年の夏季に分解洗浄による性能回復を行い、2022年6月に1MWの試験を行った。熱交換器の性能は改善されていたが、2022年6月の試験時は猛暑日となり、1MWでは運転を継続できなかった。一方、600kWであれば真夏の猛暑であっても運転できることを確認した。
山本 風海; 山本 昌亘; 山崎 良雄; 野村 昌弘; 菅沼 和明; 藤来 洸裕; 神谷 潤一郎; 仲野谷 孝充; 畠山 衆一郎; 吉本 政弘; et al.
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.277 - 281, 2023/01
J-PARC 3GeVシンクロトロン(3GeV Rapid Cycling Synchrotron, RCS)は物質生命科学実験施設(Materials and Life science experimental Facility: MLF)および主リング(Main Ring: MR)に最大1MW相当のビームを供給している。RCSは改良を重ねつつ徐々にビーム出力を上げていき、2015年に1MW相当の試験運転に成功した。その後、供用運転としても段階的にビーム出力を増加しながら、1MWの連続運転試験を断続的に行ってきたが、2020年6月に二日間の連続運転試験を実施した際には、最終的に冷却水温度が上昇し、機器の温度を下げることが出来なくなりインターロックが発報する事態となった。その後冷却水設備の熱交換器の洗浄を実施し、2022年6月に再度1MWビーム連続運転試験を行った。2022年6月の試験時は猛暑日となり、熱交換器の性能は改善されていたにも関わらず、1MWでは運転を継続できなかった。一方、600kWであれば猛暑日であっても運転できることを確認した。
仲野谷 孝充; 吉本 政弘; Saha, P. K.; 竹田 修*; 佐伯 理生二*; 武藤 正義*
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.629 - 633, 2023/01
J-PARC 3GeVシンクロトロン(RCS: Rapid Cycling Synchrotron)では、前段加速器であるリニアックから入射した400MeVのHビームを荷電変換フォイルによりHビームに変換して、3GeVまで加速させている。RCSで主に使用している荷電変換フォイルは、少量のホウ素を炭素棒に添加し、これを電極としてアーク蒸着法により作製したHBCフォイル(Hybrid Boron mixed Carbon stripper foil)である。2017年から原子力機構でフォイルの内作を開始し、2018年以降これを利用運転で使用している。これまでのところフォイルを起因とする大きな問題は生じていない。一方でこの間、RCSのビームパワーは500kWから830kWへと段階的に上昇してきた。出力上昇に伴い、フォイルを支えているSiCファイバーの破断が顕著になってきた。SiCファイバーの破断はビームロスを増やしたり、フォイル回収時の汚染源となる可能性がある。この課題の対策としてより高強度な特性を持つSiCファイバーの使用やSiCファイバーパターンの変更などの対策を検討した。本発表では近年のJ-PARC利用運転でのフォイルの使用状況と課題とその対策ついて報告する。
山本 風海; 金正 倫計; 林 直樹; Saha, P. K.; 田村 文彦; 山本 昌亘; 谷 教夫; 高柳 智弘; 神谷 潤一郎; 菖蒲田 義博; et al.
Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09
被引用回数:5 パーセンタイル:81.82(Nuclear Science & Technology)J-PARC 3GeVシンクロトロン(RCS)は、最大1MWの大強度ビームを25Hzという早い繰り返しで中性子実験及び下流の主リングシンクロトロンに供給することを目的に設計された。2007年の加速器調整運転開始以降、RCSではビーム試験を通じて加速器の設計性能が満たされているかの確認を進め、必要に応じてより安定に運転するための改善を行ってきた。その結果として、近年RCSは1MWのビーム出力で連続運転を行うことが可能となり、共用運転に向けた最後の課題の抽出と対策の検討が進められている。本論文ではRCSの設計方針と実際の性能、および改善点について議論する。
仲野谷 孝充; 神谷 潤一郎; 吉本 政弘; 高柳 智弘; 谷 教夫; 古徳 博文*; 堀野 光喜*; 柳橋 享*; 竹田 修*; 山本 風海
JAEA-Technology 2021-019, 105 Pages, 2021/11
J-PARC 3GeVシンクロトロン加速器ではビーム出力の増強に伴い、ビーム入射部付近では放射化による機器の表面線量と空間線量率が年々増加している。一方でビーム入射部には人の手によるメンテナンスが欠かせない機器が多数存在しており、作業者の被ばく低減が重要な課題であった。そのため、本加速器施設を管理するJ-PARCセンター加速器ディビジョン加速器第二セクションにおいて、作業者の被ばく低減のための遮蔽体設置を目的としたワーキンググループ「入射部タスクフォース」を設立し、遮蔽体の構造や設置方法等について検討を重ねてきた。結果、ビーム入射部の構造を一部更新し、必要な際に容易に取付けが可能な非常設型の遮蔽体を設置することとした。そして、2020年夏期メンテナンス期間に遮蔽体の設置に必要な更新作業を実施し、遮蔽体の設置を行った。更新作業は高線量下で長期間に渡るため、作業員の被ばく量を抑えることが重要な課題であった。このため、事前に入念に作業計画と作業手順を作成し、作業期間中も様々な被ばく低減対策と個々の被ばく管理を行った。これにより、作業者の被ばく線量を管理目標値以下に抑えることができた。本作業の実施により、ビーム入射部に取付け取外し可能な遮蔽体を設置できるようになった。この遮蔽体により入射部近傍での作業時の被ばく線量の低減に寄与できることが確認できた。夏期メンテナンス期間中のほぼすべてで入射部を占有する大規模な作業となったが、今後の保守作業における被ばく抑制のためには非常に有意義な作業であったと考えられる。
吉本 政弘; 仲野谷 孝充; 山崎 良雄; Saha, P. K.; 金正 倫計; 山本 春也*; 岡崎 宏之*; 田口 富嗣*; 山田 尚人*; 山縣 諒平*
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.850 - 854, 2021/10
J-PARC 3GeVシンクロトロン加速器(RCS: Rapid Cycling Synchrotron)では、大強度陽子ビームを実現するために荷電変換フォイルを用いた荷電変換ビーム多重入射方式を採用している。この入射方式では、リニアックから入射される負水素ビームが荷電変換フォイルを通過する際に陽子に変換され、周回ビームに重ねることができる。そのため、ビームサイズを広げずに大強度ビームを蓄積することができる。一方で、ビーム入射期間中は、リニアックからの負水素ビームとRCSで周回する陽子ビームの双方がフォイルを通過するため、荷電変換フォイルのビーム照射に対する耐久性能の向上は大きな課題となっている。RCSでは、ホウ素を添加した炭素電極によるアーク放電法で製膜した薄膜(Hybrid type thick Boron-doped Carbon: HBC)を荷電変換フォイルとして用いている。HBCフォイルは、ホウ素を添加することで従来の純炭素薄膜と比較してビーム照射に対する寿命の向上に成功し、RCSにおいてもビーム強度700kWでの長期間利用運転及び1MWでの2日間連続運転試験で壊れることなく使用できることを示した。我々は、ホウ素添加によりビーム照射耐久性能が向上するメカニズムを明らかにし、さらなる長寿命化に向けたフォイルの実現を目的とし、量子科学技術研究開発機構(QST)高崎・イオン照射施設(TIARA: Takasaki Ion Accelerators for Advanced Radiation Application)のイオンビームを用いた照射試験を行ってきた。これまで、ホウ素の添加量やカソード・アノード電極に使用するホウ素添加炭素電極と純炭素電極の組み合わせにより、イオンビーム照射による寿命が異なることが分かってきた。本報告では、ビーム照射試験の結果からHBCフォイル内のホウ素の役割に関する考察について報告する。
山本 風海; 畠山 衆一郎; 大津 聡*; 松本 哲郎*; 吉本 政弘
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.494 - 498, 2021/10
J-PARC 3GeVシンクロトロン(3GeV Rapid Cycling Synchrotron, RCS)では、2021年5月現在、およそ740kWで中性子ターゲットに向けた連続運転を行っている。機器の放射線損傷の検討のために、加速器運転中のビームロスによる中性子やガンマ線などの二次粒子のスペクトルの評価方法を検討しているが、ビームロス量が過多であった場合は、ビームロスによって発生する中性子やガンマ線を識別することは困難となる。しかしRCSでは、入射直線部を除きほとんどロスが発生していないことが、ロスモニタの出力および残留線量の測定よりわかっている。そこで、今回は運転後の線量が現在の運転状況において数十マイクロSv/h程度である出射分岐ダクトの近傍において、液体シンチレータを用いて中性子-ガンマ線の弁別が可能か予備試験を行った。試験の結果、検出器に入ってくる二次粒子のレートは弁別可能なレベルであることが判った。
仲野谷 孝充; 神谷 潤一郎; 吉本 政弘; 高柳 智弘; 谷 教夫; 古徳 博文*; 堀野 光喜*; 柳橋 享*; 竹田 修*; 山本 風海
Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.238 - 242, 2021/10
J-PARC 3GeVシンクロトロン加速器ではビーム出力の増強に伴い、ビーム入射部付近では放射化による機器の表面線量と空間線量率が年々増加している。一方でビーム入射部には人の手によるメンテナンスが欠かせない機器が多数存在しており、作業者の被ばく低減が重要な課題であった。特に今後、本加速器の設計値である1MWで定常的な運転をしていくとさらなる機器の放射化が予想されるため、作業者の被ばくを低減するには遮蔽体の設置が必須である。遮蔽体の形状、設置方法等について検討を重ねた結果、ビームライン架台に対して取り外し可能な遮蔽体を設置することとした。そして、2020年夏季メンテナンス期間に遮蔽体の設置作業を実施した。遮蔽体の設置作業は高線量下で行われるため、作業員の被ばく量を抑えることが重要な課題であった。被ばく低減を図るため、入念に作業計画と作業手順を作成し、また、作業期間中も様々な被ばく低減対策と個々の被ばく管理を行った。これにより、作業者の最大の被ばく線量を管理目標値以下に抑えて作業を完遂することができた。遮蔽体設置後に遮蔽効果を検証した結果、この遮蔽体によって入射部近傍での被ばく線量が大幅に低減することが確認できた。本発表では設置した遮蔽体の概要、設置作業に係る作業管理・放射線管理及び遮蔽効果について報告する。
山本 風海
Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3027 - 3030, 2021/08
J-PARC 3GeVシンクロトロン(RCS)は、物質生命科学実験施設(MLF)および主リングシンクロトロンに向けて大強度陽子ビームを供給しており、近年ではMLFに向けて700kWで安定運転を行っている。また2020年6月末には、設計出力である1MWのビームをおよそ二日間にわたってMLFに供給した。最近二年間に関しては、RCSでは特に大きなトラブルもなく、順調にユーザーにビームを供給することができている。また、これまで実施してきたビーム調整の成果により、1MWの運転はビームロスの観点からは何の問題もなく行えることを確認した。しかしながら一方で、1MW運転を6月末に実施したため、その期間の外気温および湿度の上昇が激しく、冷却水設備がその影響を受け現状のままでは1MWで夏季に安定に運転できないことが判明した。現在、装置側の熱負荷の低減策の検討と冷却水設備の増強の設計検討を進めている。
山本 風海; 畠山 衆一郎; Saha, P. K.; 守屋 克洋; 岡部 晃大; 吉本 政弘; 仲野谷 孝充; 藤来 洸裕; 山崎 良雄; 菅沼 和明
EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07
J-PARC 3GeVシンクロトロン(RCS)は最大1MWの高出力陽子ビームを中性子ターゲットに供給している。稼働率を向上し実験成果の最大化を図るために、RCSではさまざま運転パラメータの履歴を記録しているが、そのデータのうち入射効率と入射ビームラインの磁石を冷却している冷却水温度が同期していることを発見した。RCS入射時に、入射負水素(H)ビームは炭素薄膜を通過し陽子に変換されるので、入射効率が変動しているという事は陽子への変換効率が冷却水温度に依存していることを示している。ビーム形状,薄膜の条件等から、入射ビームのフォイルへの入射位置が0.072mm程度振動していて、それが磁石磁場の変動に換算して1.6310となることを求めた。この値は、単純に磁石が冷却水の温度変動に従って伸び縮みするとして評価した結果とファクタ程度で一致し、変換効率の変動の主要因は磁場変動であることが確認できた。
發知 英明; 原田 寛之; 林 直樹; 金正 倫計; 岡部 晃大; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 山本 風海; 山本 昌亘; et al.
JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03
J-PARC RCSは、2019年7月に、1MWの連続(10.5時間)運転に成功したところである。高出力かつ安定な利用運転を実現するためには、1.21.5MW相当の更に高いビーム強度でのビームの振る舞いを精査することが必要になるため、RCSでは、2018年の10月と12月に1.2MW相当の大強度試験を実施した。当初は、1程度の有意なビーム損失が出現したが、チューンや横方向ペイント範囲を最適化することで、そのビーム損失を10レベルにまで低減することに成功した。また、数値シミュレーションでその実験結果を精度良く再現することにも成功している。本発表では、実験結果と計算結果の詳細比較からビーム損失の発生や低減のメカニズムを議論する。また、近い将来実施予定の1.5MW相当の大強度ビーム加速の実現に向けた取り組みも紹介する。
發知 英明; 原田 寛之; 林 直樹; 金正 倫計; 岡部 晃大; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 山本 風海; 山本 昌亘; et al.
Journal of Instrumentation (Internet), 15(7), p.P07022_1 - P07022_16, 2020/07
被引用回数:3 パーセンタイル:20.35(Instruments & Instrumentation)RCSのような大強度陽子加速器では、ビーム損失により生じる機器の放射化がビーム出力を制限する最大の要因となる。RCSでは、高精度の計算モデルを構築し、数値シミュレーションと実験を組み合わせたアプローチでビーム損失の低減に取り組んできた。数値シミュレーションと実験の一致は良好で、計算機上で再現したビーム損失を詳細に解析することで実際の加速器で起こっている現象を十分な確度で理解することが可能になっただけでなく、それを低減するためのビーム補正手法を確立するのに数値シミュレーションが重要な役割を果たした。ハードウェアの改良と共に、こうした一連のビーム力学的研究により、1MW設計運転時のビーム損失を10レベルにまで低減することに成功している。本発表では、1MW調整時に直面したビーム損失について、発生メカニズムや解決手法をレビューすると共に、最近行った1.2MW試験の実験結果を報告する。また、最後に、数値シミュレーションを用いてRCSの限界ビーム強度を議論する。
發知 英明
Physical Review Accelerators and Beams (Internet), 23(5), p.050401_1 - 050401_13, 2020/05
被引用回数:6 パーセンタイル:57.61(Physics, Nuclear)J-PARC RCSのベータトロン振動数は2Qx-2Qy=0共鳴(モンタギュー共鳴)の近傍に設定されている。この共鳴は、ビーム自身が作る非線形な空間電場によって励起され、水平・鉛直間のエミッタンス交換を通して付加的な分布変動を引き起こす。そのため、この共鳴は、ペイント入射後のビームの分布形状に大きな影響を及ぼすことになる。数値シミュレーションと実験結果との詳細比較から、2Qx-2Qy=0共鳴がペイント範囲やペイント経路の取り方に依存して複数の異なった効果をビームに及ぼしていることが明らかとなった。本論文では、2Qx-2Qy=0共鳴によって生じる特徴的なビーム粒子の振る舞いを議論すると共に、その検討結果に基づいて、新たなペイント入射方式を提案する。
發知 英明; 原田 寛之; 高柳 智弘
Journal of Physics; Conference Series, 1350, p.012102_1 - 012102_5, 2019/11
被引用回数:1 パーセンタイル:51.67(Physics, Particles & Fields)In the J-PARC RCS, we investigated the influences of high-order field components inherent in four sets of injection bump magnets (dipole magnets) on the circulating beam during multi-turn injection. Ideally, the injection bump fields including the high-order field components are cancelled out with each other through the integration over the four injection bump magnets. But, in the RCS, such a field compensation is incomplete owing to the effects of magnetic interferences and feed-down fields. The residual high-order field components, not cancelled out, have a significant influence on the circulating beam via the excitation of high-order random betatron resonance. In this paper, we discuss the detailed mechanism of emittance growth and beam loss caused by the high-order field components of the injection bump magnets including their correction scenario, on the basis of numerical simulation and experimental results.
發知 英明; 原田 寛之; 岡部 晃大; Saha, P. K.; 菖蒲田 義博; 田村 文彦; 吉本 政弘
加速器, 16(2), p.109 - 118, 2019/07
RCSのようなMW級の大強度陽子加速器では、ビーム損失により生じる機器の放射化がビーム出力を制限する最大の要因となる。RCSでは、ビーム損失の原因となる様々な効果(空間電荷効果,非線形磁場,フォイル散乱等)を取り込んだ高精度の計算モデルを構築し、数値シミュレーションと実験を組み合わせたアプローチでビーム損失の低減に取り組んできた。計算と実験の一致は良好で、計算機上で、実際に発生したビーム損失を十分な精度で再現できたことは画期的なことと言える。数値シミュレーションで再現したビーム損失を詳細に解析することで、実際の加速器で起こっている現象を十分な確度で理解することが可能になっただけでなく、それを低減するためのビーム補正手法を確立するのに数値シミュレーションが重要な役割を果たした。ハードウェアの改良と共に、こうした一連のビーム力学的研究により、1MW設計運転時のビーム損失を10という極限レベルにまで低減することに成功している。本稿では、ビーム増強過程で問題になったビーム損失について、その発生機構や解決方法を報告すると共に、その際に数値シミュレーションが果たした役割について具体例を挙げて紹介する。
畠山 衆一郎*; 山本 風海; 吉本 政弘; 林 直樹
Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (インターネット), p.789 - 793, 2019/07
大強度陽子加速器施設(J-PARC)では、ビーム損失によるビームラインの放射化を防ぐため、また機器自身の不具合を検出するために機器保護システム(MPS)と呼ばれるインターロック機構が導入されている。MPSの発報によるビーム運転の停止は実験ユーザーの貴重なビーム利用時間を削ることになるので迅速な復旧が求められる。MPSの発報原因は機器からのインターロックの種類によってある程度特定可能であるが、ビーム損失モニタ(BLM)のMPSはその原因の特定が難しい。3GeVシンクロトロンの場合、物質生命科学実験施設行と主リング行の2種類のビームを切り替えながら運転しており、ビームモニタのデータもそれらを区別する必要がある。そこで、ビームの行先を区別する方法としてタイミングシステムのビームタグ情報を使用するデータ収集システムを構築した。行先毎に区別されたデータを表示するアプリケーションを作成し、行先毎のBLMデータを解析できるようになった。