Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Auh, Y. H.*; Neal, N. N.*; Arole, K.*; Regis, N. A.*; Nguyen, T.*; Ogawa, Shuichi*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Radovic, M.*; Green, M. J.*; et al.
ACS Applied Materials & Interfaces, 17(21), p.31392 - 31402, 2025/05
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Kaburagi, Masaaki; Miyamoto, Yuta; Mori, Norimasa; Iwai, Hiroki; Tezuka, Masashi; Kurosawa, Shunsuke*; Tagawa, Akihiro; Takasaki, Koji
Journal of Nuclear Science and Technology, 62(3), p.308 - 316, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Suzuki, Seiya; Katsube, Daiki*; Yano, Masahiro; Tsuda, Yasutaka; Terasawa, Tomoo; Ozawa, Takahiro*; Fukutani, Katsuyuki; Kim, Y.*; Asaoka, Hidehito; Yuhara, Junji*; et al.
Small Methods, 9(3), p.2400863_1 - 2400863_9, 2025/03
Times Cited Count:1 Percentile:30.18(Chemistry, Physical)Matsumura, Taichi; Okumura, Keisuke; Sakamoto, Masahiro; Terashima, Kenichi; Riyana, E. S.; Kondo, Kazuhiro*
Nuclear Engineering and Design, 432, p.113791_1 - 113791_9, 2025/02
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Asai, Masato; Shinohara, Hirofumi*; Suzuki, Katsuyuki*; Shen, H.*
Journal of Nuclear Science and Technology, 10 Pages, 2025/00
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The spectrum determination method (SDM) is the method to determine radioactivities by analyzing full spectral shape of - or
rays through least-squares fitting by referring to standard
- and
spectra. In this paper, we have newly applied the SDM to a unified spectrum composed of two spectra measured with a Ge detector and a liquid scintillation counter. By analyzing the unified spectrum, uncertainties of deduced radioactivities have been improved. We applied this method to the unified spectrum including 40 radionuclides with equal intensities, and have deduced their radioactivities correctly.
Tsutsui, Satoshi; Ito, Takashi; Nakamura, Jin*; Yoshida, Mio*; Kobayashi, Yoshio*; Yoda, Yoshitaka*; Nakamura, Jumpei*; Koda, Akihiro*; Higashinaka, Ryuji*; Aoki, Dai*; et al.
Interactions (Internet), 245(1), p.55_1 - 55_9, 2024/12
Tsutsui, Satoshi; Higashinaka, Ryuji*; Mizumaki, Masaichiro*; Kobayashi, Yoshio*; Nakamura, Jin*; Ito, Takashi; Yoda, Yoshitaka*; Matsuda, Tatsuma*; Aoki, Yuji*; Sato, Hideyuki*
Interactions (Internet), 245(1), p.9_1 - 9_10, 2024/12
Teshigawara, Makoto; Lee, Y.*; Tatsumoto, Hideki*; Hartl, M.*; Aso, Tomokazu; Iverson, E. B.*; Ariyoshi, Gen; Ikeda, Yujiro*; Hasegawa, Takumi*
Nuclear Instruments and Methods in Physics Research B, 557, p.165534_1 - 165534_10, 2024/12
Times Cited Count:1 Percentile:0.00(Instruments & Instrumentation)At Japanese Spallation Neutron Source in J-PARC, the para-hydrogen fraction was measured by using Raman spectroscopy in-situ for an integrated beam power of 9.4 MWh at 1 MW operation, to evaluate the functionality of the ferric oxyhydroxide catalyst. This result showed that full functionality of the catalyst was retained up to the 1 MW operation. We attempted to study the effect of neutron scattering driven para to ortho-hydrogen back-conversion rate in the absence of the catalyst effect with a bypass line without catalyst. The measured increase of ortho-hydrogen fraction was 0.44% for an integrated beam power of 2.4 MW
h at 500 kW operation, however, which was considered to be due to not only to neutron collisions in cold moderators but also to the high ortho-hydrogen fraction of initially static liquid hydrogen in the bypass line and passive exudation of quasi-static hydrogen in the catalyst vessel to the main loop.
Batsaikhan, M.; Oba, Hironori; Karino, Takahiro; Akaoka, Katsuaki; Wakaida, Ikuo
Optics Express (Internet), 32(24), p.42626 - 42638, 2024/11
Times Cited Count:0 Percentile:0.00(Optics)Iwata, Yoshihiro; Miyabe, Masabumi; Wells, S. R.*; Yamamoto, Yuta*; Hasegawa, Shuichi*
Proceedings of International Topical Workshop on Fukushima Decommissioning Research 2024 (FDR2024) (Internet), 4 Pages, 2024/10
In this study, triple and double resonance ionization schemes of atomic Ca were developed, aiming for the separation of odd isotopes by (i) laser polarization-dependent selection rules, and (ii) large isotope shifts of odd Ca isotopes in the Rydberg levels. Separation of odd isotopes was confirmed under the orthogonal condition. Suppression of non-resonant ionization of Ca by the electric field in the ionization region could further improve the optical isotope selectivity of
Ca.
Licensing Application Group, Fuels and Materials Department
JAEA-Testing 2024-002, 20 Pages, 2024/08
The contamination accident occurred at Plutonium Fuel Research Facility (PFRF) in Japan Atomic Energy Agency (JAEA) Oarai Research and Development Institute on June 6, 2017. During the work of opening the fuel storage container and checking the properties of the contents, the plastic bag that double-packed the inner container burst. The scattering of the fuels contaminated the work room and exposed the worker. The cause of the plastic bag burst was that the enclosed epoxy resin was decomposed by -rays and the internal pressure increased due to the generated hydrogen gas. The 54 storage containers containing plutonium held at PFRF also at risk of increasing internal pressure. Therefore, an opening inspection was conducted to confirm the contents of the storage container in the hot cell. In addition, the contents of storage containers that may generate gas were stabilized. We are planning to transport the fuel storage containers out to another facility for the decommission of PFRF. The other 9 storage containers include oxide raw material powder: Pu +
U in excess of 220 g. In order to decrease to less than 220 g (the limit of transport cask), the metal inner containers in the storage container were taken out and repacked in another storage container. This report describes advance measures such as permit application and the details of about storage container opening inspection and metal inner container repacking.
Tamura, Koji; Nakanishi, Ryuzo; Oba, Hironori; Karino, Takahiro; Shibata, Takuya; Taira, Takunori*; Wakaida, Ikuo
Journal of Nuclear Science and Technology, 61(8), p.1109 - 1116, 2024/08
Times Cited Count:1 Percentile:23.64(Nuclear Science & Technology)Endo, Akira
Radiation Protection Dosimetry, 200(13), p.1266 - 1273, 2024/08
Times Cited Count:0 Percentile:0.00(Environmental Sciences)This study examines the relationship between ambient dose , ambient dose equivalent
, and effective dose for external neutron irradiation over 163 operational spectra from different workplaces. The results show that
provides a reasonable estimate with a controlled margin, even if overestimated, to assess effective dose compared with
, which can lead to a significant overestimation or underestimation of effective dose depending on the neutron spectra. The results highlight the limitations of
and the superiority of
in estimating effective dose according to the requirements of the operational quantity, especially in environments with high-energy neutrons.
Shikaze, Yoshiaki
Journal of Nuclear Science and Technology, 61(7), p.894 - 910, 2024/07
Times Cited Count:2 Percentile:43.92(Nuclear Science & Technology)Among the radioactive nuclides inside the nuclear reactor buildings emitted by the Fukushima Daiichi nuclear reactor accident, high-energy beta-ray sources, such as strontium-90 and yttrium-90, generate bremsstrahlung photons in the building materials, comprising the wall, floor, and interior structure. Therefore, evaluating the radiation dose of the bremsstrahlung to the workers in the nuclear reactor building is crucial for radiation protection. The precision of the evaluation calculation of the bremsstrahlung dose was investigated by comparing the Particle and Heavy Ion Transport code System (PHITS) and the GEometry ANd Tracking (GEANT4) simulation code results. In the calculation, behind various shielding plates (lead, copper, aluminum, glass, and polyethylene, with thicknesses ranging from 1.0 to 40 mm), the water cylinder was set as the evaluated material, the absorbed dose and the deposited energy spectrum by the bremsstrahlung photons were obtained, and the characteristics and differences for both simulation codes were investigated. In the comparison results of the deposited energy spectrum, the spectral shapes have consistent trends. In the energy range below several tens of keV, a peak is seen in the PHITS spectrum for the lead shielding material. In comparing the absorbed dose under various conditions of the shielding plate for generating bremsstrahlung photons, most results for both codes correlate within an 10% difference for 2.280 MeV beta-ray sources and an
20% difference for 0.5459 MeV beta-ray sources, except for
30% for 20 mm thick lead. Although there were differences in some cases, the evaluation results of the two simulation codes were concluded to correlate well with the above precision.
Oshima, Masumi*; Goto, Jun*; Hayakawa, Takehito*; Shinohara, Hirofumi*; Suzuki, Katsuyuki*; Sano, Yuichi*; Asai, Masato; Haraga, Tomoko
Journal of Nuclear Science and Technology, 61(7), p.871 - 882, 2024/07
Times Cited Count:1 Percentile:23.64(Nuclear Science & Technology)Previously we reported a simple algorithmic method of spectral determination method (SDM), which is based on the first principle that a -ray spectrum obtained for a sample is a linear superposition of individual spectra of the radioactive nuclides included in the sample and demonstrated that the method is valid for
-ray determination. Here we apply it to the spectra obtained by liquid scintillation counter (LSC). In LSC measurements quenching is generally observed and we at first developed its correction method to standard spectra. The SDM code reported in the previous investigation is used to analyze the LSC spectra. Based on the analyses done by using the measured spectra, we concluded that the SDM method is valid in the LSC spectra similarly to the
-ray spectra studied in the previous investigation.
Li, C.-Y.; Watanabe, Akira*; Uchibori, Akihiro; Okano, Yasushi
Journal of Nuclear Science and Technology, 61(7), p.935 - 957, 2024/07
Times Cited Count:2 Percentile:43.92(Nuclear Science & Technology)Lan, Z.*; Arikawa, Yasunobu*; Mirfayzi, S. R.*; Morace, A.*; Hayakawa, Takehito*; Sato, Hirotaka*; Kamiyama, Takashi*; Wei, T.*; Tatsumi, Yuta*; Koizumi, Mitsuo; et al.
Nature Communications (Internet), 15, p.5365_1 - 5365_7, 2024/07
Times Cited Count:5 Percentile:75.95(Multidisciplinary Sciences)Ishida, Shinya; Uchibori, Akihiro; Okano, Yasushi
Dai-28-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2024/06
no abstracts in English
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2023-048, 151 Pages, 2024/05
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2022. The present study aims to develop an evaluation method necessary to obtain a perspective on the long term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2022, the second year of the three-year plan, some tests and other activities on the following research items were conducted following FY2021, based on the specific research methods and research directions clarified in FY2021.
Batsaikhan, M.; Akaoka, Katsuaki; Saeki, Morihisa*; Karino, Takahiro; Oba, Hironori; Wakaida, Ikuo
Journal of Nuclear Science and Technology, 61(5), p.658 - 670, 2024/05
Times Cited Count:2 Percentile:43.92(Nuclear Science & Technology)no abstracts in English