Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 505

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of interlayer cations on montmorillonite swelling; Comparison between molecular dynamic simulations and experiments

Yotsuji, Kenji*; Tachi, Yukio; Sakuma, Hiroshi*; Kawamura, Katsuyuki*

Applied Clay Science, 204, p.106034_1 - 106034_13, 2021/04

 Times Cited Count:0

Journal Articles

A Prediction method for the dose rate of fuel debris depending on the constituent elements

Terashima, Kenichi; Okumura, Keisuke

Journal of Advanced Simulation in Science and Engineering (Internet), 8(1), p.73 - 86, 2021/03

JAEA Reports

Summaries of research and development activities by using supercomputer system of JAEA in FY2019 (April 1, 2019 - March 31, 2020)

HPC Technology Promotion Office

JAEA-Review 2020-021, 215 Pages, 2021/02

JAEA-Review-2020-021.pdf:13.11MB

Japan Atomic Energy Agency (JAEA) conducts research and development (R&D) in various fields related to nuclear power as a comprehensive institution of nuclear energy R&Ds, and utilizes computational science and technology in many activities. As shown in the fact that about 20 percent of papers published by JAEA are concerned with R&D using computational science, the supercomputer system of JAEA has become an important infrastructure to support computational science and technology. In FY2019, the system was used for R&D aiming to restore Fukushima (environmental recovery and nuclear installation decommissioning) as a priority issue, as well as for JAEA's major projects such as research and development of fast reactor cycle technology, research for safety improvement in the field of nuclear energy, and basic nuclear science and engineering research. This report presents a great number of R&D results accomplished by using the system in FY2019, as well as user support, operational records and overviews of the system, and so on.

JAEA Reports

Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyoto University*

JAEA-Review 2020-044, 79 Pages, 2021/01

JAEA-Review-2020-044.pdf:4.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Quantitative analysis of radioactivity distribution by imaging of high radiation field environment using gamma-ray imaging spectroscopy" Conducted in FY2019. In this study, a gamma-ray imaging detector, ETCC, will be improved to operate under high dose conditions, and a portable system will be constructed to be installed in the Fukushima Daiichi Nuclear PowerStation (1F). In addition, the development and combination of ETCC-based quantitative radioactivity distribution analysis methods will lead to innovative advances in the six key issues to be solved for the decommissioning of the 1F. This system will enable us to quantitatively visualize the three-dimensional radiation distribution and its origin.

Journal Articles

Numerical simulation of heat transfer behavior in EAGLE ID1 in-pile test using finite volume particle method

Zhang, T.*; Funakoshi, Kanji*; Liu, X.*; Liu, W.*; Morita, Koji*; Kamiyama, Kenji

Annals of Nuclear Energy, 150, p.107856_1 - 107856_10, 2021/01

 Times Cited Count:0 Percentile:100(Nuclear Science & Technology)

Journal Articles

Calculations for ambient dose equivalent rates in nine forests in eastern Japan from $$^{134}$$Cs and $$^{137}$$Cs radioactivity measurements

Malins, A.; Imamura, Naohiro*; Niizato, Tadafumi; Takahashi, Junko*; Kim, M.; Sakuma, Kazuyuki; Shinomiya, Yoshiki*; Miura, Satoru*; Machida, Masahiko

Journal of Environmental Radioactivity, 226, p.106456_1 - 106456_12, 2021/01

 Times Cited Count:0 Percentile:100(Environmental Sciences)

JAEA Reports

Improvement of critical safety technology in fuel debris retrieval (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-041, 30 Pages, 2020/12

JAEA-Review-2020-041.pdf:1.9MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Improvement of Critical Safety Technology in Fuel Debris Retrieval" conducted in FY2019.

JAEA Reports

Review of research on advanced computational science in FY2019

Center for Computational Science & e-Systems

JAEA-Evaluation 2020-002, 37 Pages, 2020/12

JAEA-Evaluation-2020-002.pdf:1.59MB

Research on advanced computational science for nuclear applications, based on "the plan to achieve the mid and long term goal of the Japan Atomic Energy Agency", has been performed at Center for Computational Science & e-Systems (CCSE), Japan Atomic Energy Agency. CCSE established a committee consisting of outside experts and authorities which does research evaluation and advice for the assistance of the future research and development. This report summarizes the results of the R&D performed at CCSE in FY2019 (April 1st, 2019 - March 31st, 2020) and the evaluation by the committee on them.

Journal Articles

Simulation-based Level 2 multi-unit PRA using RAVEN and a simplified thermal-hydraulic code

Zheng, X.; Mandelli, D.*; Alfonsi, A.*; Smith, C.*; Sugiyama, Tomoyuki

Proceedings of 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL 2020 and PSAM-15) (Internet), p.2176 - 2183, 2020/11

Journal Articles

Integration of transportation simulation with a level 3 PRA code for nuclear power plants

Shimada, Kazumasa; Sakurahara, Tatsuya*; Reihani, S.*; Mohagehgh, Z.*

Proceedings of Asian Symposium on Risk Assessment and Management 2020 (ASRAM 2020) (Internet), 12 Pages, 2020/11

Level 3 Probabilistic Risk Assessment (Level 3 PRA) and Traffic simulation were integrated to evaluate the effects of evacuation more realistically on radiation exposure to residents in the offsite consequence analysis. In this study, WinMACCS was used as the Level 3 PRA code. As a test case, the Sequoyah Nuclear Power Plant(NPP) site, which was targeted by the State-of-the-Art Reactor Consequence Analyzes (SOARCA) issued by U.S. Nuclear Regulatory Commission in 2017, was adopted. The MultiAgent Transport Simulation (MATSim) was used to simulate the evacuation of a Sequoyah NPP's 10-mile Emergency Planning Zone. For the transportation route choice, the route where each vehicle chooses the shortest distance and the route where the total evacuation time is shortened by iterative calculation were chosen. In the calculation of MACCS, the source term with the shortest release start time in the SOARCA report was adopted. As an example of the results, the radiation dose of the residents when the evacuation time was optimized was reduced by about 30% from the dose when the shortest distance was selected. Furthermore, a sensitivity analysis was conducted, and it was shown that the evacuation preparation time was the largest factor that contributed to the radiation dose to residents.

Journal Articles

A Model intercomparison of atmospheric $$^{137}$$Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III; Simulation with an identical source term and meteorological field at 1-km resolution

Sato, Yosuke*; Sekiyama, Tsuyoshi*; Fang, S.*; Kajino, Mizuo*; Qu$'e$rel, A.*; Qu$'e$lo, D.*; Kondo, Hiroaki*; Terada, Hiroaki; Kadowaki, Masanao; Takigawa, Masayuki*; et al.

Atmospheric Environment; X (Internet), 7, p.100086_1 - 100086_12, 2020/10

The third model intercomparison project for investigating the atmospheric behavior of $$^{137}$$Cs emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident (FDNPP-MIP) was conducted. A finer horizontal grid spacing (1 km) was used than in the previous FDNPP-MIP. Nine of the models used in the previous FDNPP-MIP were also used, and all models used identical source terms and meteorological fields. Our analyses indicated that most of the observed high atmospheric $$^{137}$$Cs concentrations were well simulated, and the good performance of some models improved the performance of the multi-model ensemble. The analyses also confirmed that the use of a finer grid resolution resulted in the meteorological field near FDNPP being better reproduced. The good representation of the wind field resulted in the reasonable simulation of the narrow distribution of high deposition amount to the northwest of FDNPP and the reduction of the overestimation over the area to the south of FDNPP. In contrast, the performance of the models in simulating plumes observed over the Nakadori area, the northern part of Gunma, and the Tokyo metropolitan area was slightly worse.

Journal Articles

Numerical simulation of the solid particle sedimentation and bed formation behaviors using a hybrid method

Sheikh, M. A. R.*; Liu, X.*; Matsumoto, Tatsuya*; Morita, Koji*; Guo, L.*; Suzuki, Toru*; Kamiyama, Kenji

Energies (Internet), 13(19), p.5018_1 - 5018_15, 2020/10

 Times Cited Count:0 Percentile:100(Energy & Fuels)

Journal Articles

Simulation analysis of the Compton-to-peak method for quantifying radiocesium deposition quantities

Malins, A.; Ochi, Kotaro; Machida, Masahiko; Sanada, Yukihisa

Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.147 - 154, 2020/10

Journal Articles

Nanoscale relaxation in "Water-in-Salt" and "Water-in-Bisalt" electrolytes

Gonzal$'e$z, M. A.*; Borodin, O.*; Kofu, Maiko; Shibata, Kaoru; Yamada, Takeshi*; Yamamuro, Osamu*; Xu, K.*; Price, D. L.*; Saboungi, M.-L.*

Journal of Physical Chemistry Letters (Internet), 11(17), p.7279 - 7284, 2020/09

 Times Cited Count:0 Percentile:100(Chemistry, Physical)

Journal Articles

Numerical simulation of microparticles motion in two-phase bubbly flow

Yoshida, Hiroyuki; Uesawa, Shinichiro

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

Journal Articles

Numerical simulation of liquid jet behavior in shallow pool by interface tracking method

Suzuki, Takayuki*; Yoshida, Hiroyuki; Horiguchi, Naoki; Yamamura, Sota*; Abe, Yutaka*

Proceedings of 2020 International Conference on Nuclear Engineering (ICONE 2020) (Internet), 7 Pages, 2020/08

JAEA Reports

Development of measurement system of radioactive plume using unmanned airplane in the fiscal year 2018 (Contract research)

Sanada, Yukihisa; Ochi, Kotaro; Ishizaki, Azusa

JAEA-Research 2020-006, 60 Pages, 2020/07

JAEA-Research-2020-006.pdf:4.84MB

At the accident of nuclear facilities, a prediction of the behavior of released radioactive plume is indispensable to make a decision on a refuge plan of inhabitants. Currently, prediction system which is based on atmospheric dispersion simulation has been implemented as a tool of the atomic energy disaster prevention. However, the direct measurement method of the radioactive plume has not existed. In this study, some component technologies were developed for the establishment of direct measurement methods of radioactive plume using unmanned aerial vehicle whose technological innovation is remarkable. In addition, the spray test using mock aerosol was conducted to obtaining the deposition rate to the airplane body. The algorism of making a flight plan was developed based on a prediction model of the radioactive plume. This report summarized the outcome of the last year of the three-year plan.

Journal Articles

Atmospheric-dispersion database system that can immediately provide calculation results for various source term and meteorological conditions

Terada, Hiroaki; Nagai, Haruyasu; Tanaka, Atsunori*; Tsuzuki, Katsunori; Kadowaki, Masanao

Journal of Nuclear Science and Technology, 57(6), p.745 - 754, 2020/06

 Times Cited Count:1 Percentile:39.48(Nuclear Science & Technology)

We have estimated source term and analyzed processes of atmospheric dispersion of radioactive materials released during the Fukushima Daiichi Nuclear Power Station (FDNPS) accident by the Worldwide version of System for Environmental Emergency Dose Information. On the basis of this experience, we developed an dispersion calculation method that can respond to various needs in a nuclear emergency and provide useful information for emergency-response planning. By this method, if a release point is known, it is possible to immediately obtain the prediction results by applying provided source term to the database of dispersion-calculation results prepared in advance. With this function, it is easy to compare results by applying various source term with monitoring data, and to find out the optimum source term, which was applied for the source term estimation of the FDNPS accident. By performing this calculation with past meteorological-analysis data, it is possible to immediately get dispersion-calculation results for various source term and meteorological conditions. This database can be used for pre-accident planning, such as optimization of a monitoring plan and understanding of events to be supposed in considering emergency countermeasures.

Journal Articles

Gamma detector response simulation inside the pedestal of Fukushima Daiichi Nuclear Power Station

Riyana, E. S.; Okumura, Keisuke; Terashima, Kenichi; Matsumura, Taichi; Sakamoto, Masahiro

Mechanical Engineering Journal (Internet), 7(3), p.19-00543_1 - 19-00543_8, 2020/06

Journal Articles

Preliminary analysis of sodium experimental apparatus PLANDTL-2 for development of evaluation method for thermal-hydraulics in reactor vessel of sodium fast reactor under decay heat removal system operation condition

Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Hamase, Erina; Ezure, Toshiki

Mechanical Engineering Journal (Internet), 7(3), p.19-00546_1 - 19-00546_11, 2020/06

Fully natural circulation decay heat removal systems (DHRSs) are to be adopted for sodium fast reactors, which is a passive safety feature without any electrical pumps. It is required to grasp the thermal-hydraulic phenomena in the reactor vessel and evaluate the coolability of the core under the natural circulation not only for the normal operating condition but also for severe accident conditions. In this paper, the numerical results of the preliminary analysis for the sodium experimental condition with the PLANDTL-2 are discussed to establish an appropriate numerical models for the reactor core including the gap region among the subassemblies and the DHX. From these preliminary analyses, the characteristics of the thermal-hydraulics behavior in the PLANDTL-2 to be focused are extracted.

505 (Records 1-20 displayed on this page)