Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tuya, D.; Nagaya, Yasunobu
Journal of Nuclear Engineering (Internet), 4(4), p.691 - 710, 2023/11
The Monte Carlo method is used to accurately estimate various quantities such as k-eigenvalue and integral neutron flux. However, when a distribution of a quantity is desired, the Monte Carlo method does not typically provide continuous distribution. Recently, the functional expansion tally and kernel density estimation methods have been developed to provide continuous distribution. In this paper, we propose a method to estimate a continuous distribution of a quantity using artificial neural network (ANN) model with Monte Carlo-based training data. As a proof of concept, a continuous distribution of iterated fission probability (IFP) is estimated by ANN models in two systems. The IFP distributions by the ANN models were compared with the Monte Carlo-based data and the adjoint angular neutron fluxes by the PARTISN code. The comparisons showed varying degrees of agreement or discrepancy; however, it was observed that the ANN models learned the general trend of the IFP distributions.
Arthur, R.*; Sasamoto, Hiroshi; Alt-Epping, P.*; Tachi, Yukio
Applied Geochemistry, 155, p.105707_1 - 105707_8, 2023/08
Times Cited Count:0 Percentile:0.01(Geochemistry & Geophysics)The experience gained in modeling the evolution, from past to present, of natural tracer profiles in geologic media can help support safety assessment of disposal concepts for radioactive wastes in deep geologic repository. Solute-transport models were developed in the present study using a forward modeling approach constrained by boundary conditions inferred from the paleo-hydrogeological evolution of the Horonobe area in Hokkaido, Japan. Apparent differences in transport behavior at the two boreholes location considered in this study, which were situated only about 1 km apart, appear to have resulted from relatively small differences in accessible porosity and hydraulic conductivity, which in turn may have been controlled by local differences in fracture density and fracture connectivity.
Periez, R.*; Brovchenko, I.*; Jung, K. T.*; Kim, K. O.*; Liptak, L.*; Little, A.*; Kobayashi, Takuya; Maderich, V.*; Min, B. I.*; Suh, K. S.*
Journal of Environmental Radioactivity, 261, p.107138_1 - 107138_8, 2023/05
Times Cited Count:0 Percentile:0(Environmental Sciences)Lagrangian models present several advantages over Eulerian models to simulate the transport of radionuclides in the aquatic environment in emergency situations. A radionuclide release is simulated as a number of particles whose trajectories are calculated along time and thus these models do not require a spatial discretization. In this paper we investigate the dependence of a Lagrangian model output with the grid spacing which is used to calculate concentrations from the final distribution of particles, with the number of particles in the simulation and with the interpolation schemes which are required because of the discrete nature of the water circulation data used to feed the model.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2022-063, 86 Pages, 2023/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted from FY2019 to FY2021. Since the final year of this proposal was FY2021, the results for three fiscal years were summarized. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. The samples to be analyzed in this study were collected from wild Japanese macaques exposed in the ex-evacuation zone after the accident of 1F.
Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*
JAEA-Review 2022-045, 82 Pages, 2023/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted in FY2021. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control. We also aim to develop a research base based on materials, microorganisms, and electrochemistry, to develop technologies that can be used by engineers in the field, …
Yee-Rendon, B.; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Meigo, Shinichiro
Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.179 - 183, 2023/01
The Japan Atomic Energy Agency accelerator-driven subcritical system (JAEA-ADS) pursues the reduction of nuclear waste by transmuting minor actinides. JAEA-ADS project drives a 30-MW proton beam to a lead-bismuth eutectic (LBE) spallation target to produce neutrons for a subcritical core reactor. To this end, the JAEA-ADS beam transport (BT) must provide a suitable beam profile and stable beam power to the beam window of the spallation target to avoid high-thermal stress in the components, such as the beam window. The beam transport was optimized by tracking a large number of macroparticles to mitigate the beam loss, performance with high stability in the presence of errors, and fulfill the length requirement on the transport. This work presents beam transport design and beam dynamics research for the JAEA-ADS project.
Maurer, C.*; Galmarini, S.*; Solazzo, E.*; Kumierczyk-Michulec, J.*; Bar
, J.*; Kalinowski, M.*; Schoeppner, M.*; Bourgouin, P.*; Crawford, A.*; Stein, A.*; et al.
Journal of Environmental Radioactivity, 255, p.106968_1 - 106968_27, 2022/12
Times Cited Count:0 Percentile:21.77(Environmental Sciences)After performing multi-model exercises in 2015 and 2016, a comprehensive Xe-133 atmospheric transport modeling challenge was organized in 2019. For evaluation measured samples for the same time frame were gathered from four International Monitoring System stations located in Europe and North America with overall considerable influence of IRE and/or CNL emissions. As a lesion learnt from the 2nd ATM-Challenge participants were prompted to work with controlled and harmonized model set ups to make runs more comparable, but also to increase diversity. Effects of transport errors, not properly characterized remaining emitters and long IMS sampling times (12 to 24 hours) undoubtedly interfere with the effect of high-quality IRE and CNL stack data. An ensemble based on a few arbitrary submissions is good enough to forecast the Xe-133 background at the stations investigated. The effective ensemble size is below five.
Yee-Rendon, B.; Meigo, Shinichiro; Kondo, Yasuhiro; Tamura, Jun; Nakano, Keita; Maekawa, Fujio; Iwamoto, Hiroki; Sugawara, Takanori; Nishihara, Kenji
Journal of Instrumentation (Internet), 17(10), p.P10005_1 - P10005_21, 2022/10
Times Cited Count:0 Percentile:0(Instruments & Instrumentation)To reduce the hazard of minor actinides in nuclear waste, JAEA proposed an accelerator-driven subcritical system (JAEA-ADS). The JAEA-ADS drives a subcritical reactor 800-MWth by 30-MW proton linac delivering the beam to the spallation neutron target inside the reactor. The beam transport to the target (BTT) is required for high-beam power stability and low peak density to ensure the integrity of the beam window. Additionally, the design should have compatible with the reactor design for the maintenance and replacement of the fuel and the beam window. A robust-compact BTT design was developed through massive multiparticle simulations. The beam optics was optimized to guarantee beam window feasibility requirements by providing a low peak density of less than 0.3 A/mm
. Beam stability was evaluated and improved by simultaneously applying the linac's input beam and element errors. The input beam errors to the reactor were based on the beam degradation obtained by implementing fast fault compensation in the linac. Those results show that the BTT fulfills the requirements for JAEA-ADS.
Bateman, K.*; Murayama, Shota*; Hanamachi, Yuji*; Wilson, J.*; Seta, Takamasa*; Amano, Yuki; Kubota, Mitsuru*; Ouchi, Yuji*; Tachi, Yukio
Minerals (Internet), 12(7), p.883_1 - 883_20, 2022/07
Times Cited Count:0 Percentile:0.02(Geochemistry & Geophysics)Ishigaki, Masahiro*; Abe, Satoshi; Hamdani, A.; Hirose, Yoshiyasu
Annals of Nuclear Energy, 168, p.108867_1 - 108867_20, 2022/04
Times Cited Count:3 Percentile:77.29(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; National Institute for Materials Science*
JAEA-Review 2021-059, 71 Pages, 2022/02
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of genetic and electrochemical diagnosis and inhibition technologies for invisible corrosion caused by microorganisms" conducted in FY2020. The present study aims to develop innovative diagnostic techniques such as accelerated test specimens and on-site genetic testing for microbially induced and accelerated corrosion of metallic materials (microbially influenced corrosion, MIC), and to identify the conditions that promote MIC at 1F for proposing methods to prevent MIC through water quality and environmental control.
Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2021-050, 82 Pages, 2022/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation" conducted in FY2020. The present study aims to investigate the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. An interdisciplinary collaborative study discussed the correlation between radiation dose and the biological effect by analyzing the samples of wild Japanese macaques exposed to radiation due to the accident of Fukushima Daiichi Nuclear Power Station and of animal experiments.
Watanabe, Tsutomu*; Takagi, Marie*; Shimoyama, Ko*; Kawashima, Masayuki*; Onodera, Naoyuki; Inagaki, Atsushi*
Boundary-Layer Meteorology, 181(1), p.39 - 71, 2021/10
Times Cited Count:6 Percentile:54.01(Meteorology & Atmospheric Sciences)A double-distribution-function lattice Boltzmann model for large-eddy simulations of a passive scalar field is described within and above a plant canopy. For a top-down scalar, for which the plant canopy serves as a distributed sink, the flux of the scalar near the canopy top are predominantly determined by sweep motions originating far above the canopy. By contrast, scalar ejection events are induced by coherent eddies generated near the canopy top. In this paper, the generation of such eddies is triggered by the downward approach of massive sweep motions to existing wide regions of weak ejective motions from inside to above the canopy.
Bateman, K.; Murayama, Shota*; Hanamachi, Yuji*; Wilson, J.*; Seta, Takamasa*; Amano, Yuki; Kubota, Mitsuru*; Ouchi, Yuji*; Tachi, Yukio
Minerals (Internet), 11(9), p.1026_1 - 1026_23, 2021/09
Times Cited Count:2 Percentile:27.49(Geochemistry & Geophysics)Goullo, M.*; Hokkinen, M.*; Suzuki, Eriko; Horiguchi, Naoki; Barrachin, M.*; Cousin, F.*
Progress in Nuclear Energy, 138, p.103818_1 - 103818_10, 2021/08
Times Cited Count:3 Percentile:62.43(Nuclear Science & Technology)The present work aimed to study the transport of caesium iodide particles through a Thermal Gradient Tube (TGT) from 1023 K to 453 K. Retention inside the tube was evaluated for laminar flowrates composed of argon and steam. Higher retention of particles was highlighted for the experiments using higher steam content and lower flowrate. The second phase of the experiment aimed at identifying the possible revaporization or/and resuspension processes after the deposition. Three atmosphere compositions (Ar/HO, Ar/H
and Ar/Air) were investigated. The particles removed from what was deposited on the surface walls during the sampling phase exhibited a similar GMD in Ar/H
O and Ar/H
and a bigger diameter in Ar/Air. The experimental results were then analysed with the SOPHAEROS module of the ASTEC code. Overall, the results obtained during the first phase were in agreement with the measured experimental results and during second phase led to no resuspension process.
Matsuoka, Seikichi*; Sugama, Hideo*; Idomura, Yasuhiro
Physics of Plasmas, 28(6), p.064501_1 - 064501_5, 2021/06
Times Cited Count:4 Percentile:48.75(Physics, Fluids & Plasmas)The improved model collision operator proposed by Sugama et al., which can recover the friction-flow relation of the linearized Landau collision operator, is newly implemented in a global full- f gyrokinetic simulation code, GT5D, and collisional transport simulations of a single ion species plasma in a tokamak are performed over the wide collisionality regime. The improved operator is verified to reproduce the theoretical collisional thermal diffusivity precisely in the high collisionality regime, where the friction-flow relation of higher accuracy is required than in the lower collisional regime. In addition, it is found in all collisionality regimes that the higher accuracy of the collisional thermal diffusivity and the parallel flow coefficient is obtained by the improved operator, demonstrating that collisional processes described by the linearized Landau collision operator is correctly retained.
Kawamura, Hideyuki; Hirose, Naoki*; Nakayama, Tomoharu*; Ito, Toshimichi
JAEA-Data/Code 2021-004, 34 Pages, 2021/05
The Japan Atomic Energy Agency measured the ocean current across the Tsugaru Strait using an Acoustic Doppler Current Profiler attached on a ferryboat from October 1999 to January 2008. The characteristics of the ocean current in the Tsugaru Strait must be understood for predicting oceanic dispersion of radioactive materials released from nuclear facilities around the strait. Furthermore, it is critical to elucidate the mechanism of the Tsugaru Warm Current from an oceanography viewpoint. The dataset obtained in this investigation consists of daily ocean current data files that record the components of the current speed in the east-west and north-south directions from the surface layer to the bottom layer. The dataset stores 2,211 daily ocean current data files, despite some data periods missing from October 1999 to January 2008. In this study, information on the dataset is described for users to analyze the dataset properly for their purposes. Section 1 provides the background and purpose of the ocean current measurement, Section 2 explains the methodology of measurement using an Acoustic Doppler Current Profiler, and Section 3 explains the record format of the daily ocean current data files and data acquisition rate and presents analysis results. Finally, Section 4 concludes this study.
Sugiyama, Daisuke*; Nakabayashi, Ryo*; Tanaka, Shingo*; Koma, Yoshikazu; Takahatake, Yoko
Journal of Nuclear Science and Technology, 58(4), p.493 - 506, 2021/04
Times Cited Count:1 Percentile:19.33(Nuclear Science & Technology)Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*
JAEA-Review 2020-048, 49 Pages, 2021/01
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "The study of oxidative stress status in the organs exposed to low dose/low dose-rate radiation". This study investigates the biological effects of low dose/low dose-rate radiation exposure, which is of great social interest, on the oxidative stress status of individual organs and will contribute to the collection of scientific data in a dose range to be required. An interdisciplinary collaborative study discussed the correlation between radiation dose and the biological effect by analyzing the samples of wild Japanese macaques exposed to radiation due to the accident of Fukushima nuclear power station and of animal experiments.
Ikenoue, Tsubasa; Shimadera, Hikari*; Kondo, Akira*
Journal of Environmental Radioactivity, 225, p.106452_1 - 106452_12, 2020/12
Times Cited Count:3 Percentile:16.47(Environmental Sciences)This study focused on the uncertainty of the factors of the Universal Soil Loss Equation (USLE) and evaluated its impacts on the environmental fate of Cs simulated by a radiocesium transport model in the Abukuma River basin. The USLE has five physically meaningful factors: the rainfall and runoff factor (R), soil erodibility factor (K), topographic factor (LS), cover and management factor (C), and support practice factor (P). The simulation results showed total suspended sediment and
Cs outflows were the most sensitive to C and P among the all factors. Therefore, land cover and soil erosion prevention act have the great impact on outflow of suspended sediment and
Cs. Focusing on land use, the outflow rates of
Cs from the forest areas, croplands, and undisturbed paddy fields were large. This study indicates that land use, especially forest areas, croplands, and undisturbed paddy fields, has a significant impact on the environmental fate of
Cs.