Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2021-023, 49 Pages, 2021/12

JAEA-Review-2021-023.pdf:2.39MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil" conducted from FY2018 to FY2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aims to develop a novel method to reduce the volume of contaminated soil caused by an accident at the Fukushima Daiichi Nuclear Power Station. The heavy liquid separation method, which was optimized in the previous year, was applied to nine soils collected in Fukushima Prefecture. As a result, radioactivity concentration and weight of the contaminated soils were reduced by half at six sites by separating the soils into two fractions u

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2020-037, 53 Pages, 2020/12

JAEA-Review-2020-037.pdf:3.46MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2018, this report summarizes the research results of the "Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil" conducted in FY2019.

JAEA Reports

Upgrading of recovery method for radioactive microparticles by heavy liquid separation aiming to volume reduction of contaminated soil (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; University of Tsukuba*

JAEA-Review 2019-023, 33 Pages, 2020/01

JAEA-Review-2019-023.pdf:1.97MB

CLADS, JAEA, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the 'Upgrading of Recovery Method for Radioactive Microparticles by Heavy Liquid Separation Aiming to Volume Reduction of Contaminated Soil'. After the accident of the Fukushima Daiichi Nuclear Power Station, radioactive cesium has been heterogeneously distributed in surface soil due to the existence of radioactive microparticles and clay minerals. Therefore, the selective removal of these microparticles will lead to the volume reduction of contaminated soil. The present study examines methods for selectively removing radioactive microparticles from soil. Also, in order to reduce the volume of contaminated soil, we search a possibility to practically apply the separation method that uses the difference in specific gravity of particles (heavy liquid separation method).

JAEA Reports

Development of refilling techniques of LA-type bituminized waste products

Irisawa, Keita; Komatsuzaki, Toshio; Kawato, Yoshimi; Sakakibara, Tetsuro; Nakazawa, Osamu; Meguro, Yoshihiro

JAEA-Technology 2014-039, 28 Pages, 2014/12

JAEA-Technology-2014-039.pdf:6.13MB

In JAEA, 13,296 drums of low-radioactivity bituminized waste products (BWPs) have been stored in asphalt solidification storages. In order to effectively utilize the space of the BWP in a repository site, we studied refilling techniques of the BWP from the drum to a box-shaped container. Tentative processes, which we devised, consisted of (1) take-off of BWP from the drum, (2) separation of a post filling part from BWP and (3) filling of BWP to a box-shaped container. Two methods for each process were selected, and work efficiencies of the methods were investigated by using a synthetic BWP.

Journal Articles

System of the advanced volume reduction facilities for LLW at JAERI

Higuchi, Hidekazu; Momma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Tohei, Toshio; Sudo, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Hemmi, Ko; Ishikawa, Joji; et al.

Proceedings of International Conference on Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL 2005) (CD-ROM), 6 Pages, 2005/10

The JAERI constructed the Advanced Volume Reduction Facilities(AVRF). The AVRF consists of the Waste Size Reduction and Storage Facilities(WSRSF) and the Waste Volume Reduction Facilities(WVRF). By operating the AVRF, it will be able to produce waste packages for final disposal and to reduce the amount of the low level solid wastes. Cutting installations for large wastes such as tanks in the WSRSF have been operating since June 1999. The wastes treated so far amount to 600 m$$^{3}$$ and the volume reduction ratio is around 1/3. The waste volume reduction is carried out by a high-compaction process or melting processes in the WVRF. The metal wastes from research reactors are treated by the high-compaction process. The other wastes are treated by the melting processes that enable to estimate radioactivity levels easily by homogenization and get chemical and physical stability. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005.

JAEA Reports

Volume reduction of ion exchange resins by catalytic incineration, III; Investigation of overall reaction rate

Yahata, Taneaki; *; Hirata, Masaru

JAERI-M 90-075, 68 Pages, 1990/05

JAERI-M-90-075.pdf:1.7MB

no abstracts in English

6 (Records 1-6 displayed on this page)
  • 1