Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Collaborative Laboratories for Advanced Decommissioning Science; Yokohama National University*
JAEA-Review 2024-024, 88 Pages, 2024/11
The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2022, this report summarizes the research results of the "Development of passive wireless communication systems operatable under inferior-wireless environment with obstacles" conducted in FY2022. The present study aims to develop a wireless system, sensor positioning algorithms, and wireless area formation technology for electromagnetically shielded areas. We developed a base station antenna and a sensor node that use 2.45 GHz for downlink and 4.9 GHz, which is the second harmonic, for uplink. We also confirmed that the developed circuit and antenna operate in a strong radioactive environment.
Idomura, Yasuhiro; Ina, Takuya*; Ali, Y.*; Imamura, Toshiyuki*
Proceedings of International Conference for High Performance Computing, Networking, Storage, and Analysis (SC 2020) (Internet), p.1318 - 1330, 2020/11
Times Cited Count:2 Percentile:49.27(Computer Science, Information Systems)The multi-scale full- simulation of the next generation experimental fusion reactor ITER based on a five dimensional (5D) gyrokinetic model is one of the most computationally demanding problems in fusion science. In this work, a Gyrokinetic Toroidal 5D Eulerian code (GT5D) is accelerated by a new mixed-precision communication-avoiding (CA) Krylov method. The bottleneck of global collective communication on accelerated computing platforms is resolved using a CA Krylov method. In addition, a new FP16 preconditioner, which is designed using the new support for FP16 SIMD operations on A64FX, reduces both the number of iterations (halo data communication) and the computational cost. The performance of the proposed method for ITER size simulations with 0.1 trillion grids on 1,440 CPUs/GPUs on Fugaku and Summit shows 2.8x and 1.9x speedups respectively from the conventional non-CA Krylov method, and excellent strong scaling is obtained up to 5,760 CPUs/GPUs.
Nishiyama, Yutaka; Iwai, Masaki; Tsubaki, Hirohiko; Chiba, Yusuke; Hayasaka, Toshiro*; Ono, Hayato*; Hanyu, Toshinori*
JAEA-Technology 2020-006, 26 Pages, 2020/08
Maintenance and Operation Section for Remote Control Equipment in Naraha Center for Remote Control Technology Development is the main part of the nuclear emergency response team of JAEA deal with Act on Special Measures Concerning Nuclear Emergency Preparedness. The section needs to remodel crawler-type robots for tasks, crawler-type scouting robots, and so on. About two crawler-type robots for tasks, the section designed and mounted advanced wireless communication equipment on manipulators mounted on the two robots. The crawler part of the robot has been able to be controlled by way of the new equipment, and when it is broken down, it can be changed by way of an original equipment. And the new equipment makes a single relay robot controllable both the crawler part and the manipulator part of the robot, in case of wireless relay robots being needed. And after checking the ability and characteristic about 5 wireless communication equipment, the section chose and mounted the best equipment on one crawler-type scouting robot. This report shows design and mounting advanced wireless communication equipment on the two crawler-type robots for tasks and on the one crawler-type scouting robot.
Asahi, Yuichi*; Latu, G.*; Bigot, J.*; Maeyama, Shinya*; Grandgirard, V.*; Idomura, Yasuhiro
Concurrency and Computation; Practice and Experience, 32(5), p.e5551_1 - e5551_21, 2020/03
Times Cited Count:1 Percentile:12.51(Computer Science, Software Engineering)Two five-dimensional gyrokinetic codes GYSELA and GKV were ported to the modern accelerators, Xeon Phi KNL and Tesla P100 GPU. Serial computing kernels of GYSELA on KNL and GKV on P100 GPU were respectively 1.3x and 7.4x faster than those on a single Skylake processor. Scaling tests of GYSELA and GKV were respectively performed from 16 to 512 KNLs and from 32 to 256 P100 GPUs, and data transpose communications in semi-Lagrangian kernels in GYSELA and in convolution kernels in GKV were found to be main bottlenecks, respectively. In order to mitigate the communication costs, pipeline-based and task-based communication overlapping were implemented in these codes.
Matsumoto, Kazuya*; Idomura, Yasuhiro; Ina, Takuya*; Mayumi, Akie; Yamada, Susumu
Journal of Supercomputing, 75(12), p.8115 - 8146, 2019/12
Times Cited Count:2 Percentile:22.38(Computer Science, Hardware & Architecture)A communication-avoiding generalized minimum residual method (CA-GMRES) is implemented on a hybrid CPU-GPU cluster, targeted for the performance acceleration of iterative linear system solver in the gyrokinetic toroidal five-dimensional Eulerian code GT5D. In addition to the CA-GMRES, we implement and evaluate a modified variant of CA-GMRES (M-CA-GMRES) proposed in our previous study to reduce the amount of floating-point calculations. This study demonstrates that beneficial features of the CA-GMRES are in its minimum number of collective communications and its highly efficient calculations based on dense matrix-matrix operations. The performance evaluation is conducted on the Reedbush-L GPU cluster, which contains four NVIDIA Tesla P100 GPUs per compute node. The evaluation results show that the M-CA-GMRES is 1.09x, 1.22x and 1.50x faster than the CA-GMRES, the generalized conjugate residual method (GCR), and the GMRES, respectively, when 64 GPUs are used.
Ali, Y.*; Onodera, Naoyuki; Idomura, Yasuhiro; Ina, Takuya*; Imamura, Toshiyuki*
Proceedings of 10th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2019), p.1 - 8, 2019/11
Times Cited Count:11 Percentile:94.65(Computer Science, Theory & Methods)Iterative methods for solving large linear systems are common parts of computational fluid dynamics (CFD) codes. The Preconditioned Conjugate Gradient (P-CG) method is one of the most widely used iterative methods. However, in the P-CG method, global collective communication is a crucial bottleneck especially on accelerated computing platforms. To resolve this issue, communication avoiding (CA) variants of the P-CG method are becoming increasingly important. In this paper, the P-CG and Preconditioned Chebyshev Basis CA CG (P-CBCG) solvers in the multiphase CFD code JUPITER are ported to the latest V100 GPUs. All GPU kernels are highly optimized to achieve about 90% of the roofline performance, the block Jacobi preconditioner is re-designed to extract high computing power of GPUs, and the remaining bottleneck of halo data communication is avoided by overlapping communication and computation. The overall performance of the P-CG and P-CBCG solvers is determined by the competition between the CA properties of the global collective communication and the halo data communication, indicating an importance of the inter-node interconnect bandwidth per GPU. The developed GPU solvers are accelerated up to 2x compared with the former CPU solvers on KNLs, and excellent strong scaling is achieved up to 7,680 GPUs on the Summit.
Miyahara, Kaname; Kawase, Keiichi
Genshiryoku No Ima To Ashita, p.159 - 167, 2019/03
This manuscript overviews lessons learned from decontamination pilot projects towards implementation of regional remediation after the environmental contamination due to the Fukushima Daiichi Nuclear Power Plant Accidents.
Idomura, Yasuhiro; Ina, Takuya*; Yamashita, Susumu; Onodera, Naoyuki; Yamada, Susumu; Imamura, Toshiyuki*
Proceedings of 9th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2018) (Internet), p.17 - 24, 2018/11
Times Cited Count:8 Percentile:91.36(Computer Science, Theory & Methods)A communication avoiding (CA) multigrid preconditioned conjugate gradient method (CAMGCG) is applied to the pressure Poisson equation in a multiphase CFD code JUPITER, and its computational performance and convergence property are compared against CA Krylov methods. In the JUPITER code, the CAMGCG solver has robust convergence properties regardless of the problem size, and shows both communication reduction and convergence improvement, leading to higher performance gain than CA Krylov solvers, which achieve only the former. The CAMGCG solver is applied to extreme scale multiphase CFD simulations with billion DOFs, and it is shown that compared with a preconditioned CG solver, the number of iterations is reduced to
, and
speedup is achieved with keeping excellent strong scaling up to 8,000 nodes on the Oakforest-PACS.
Saito, Kimiaki; Takahara, Shogo; Uezu, Yasuhiro
Nihon Genshiryoku Gakkai-Shi ATOMO, 60(2), p.111 - 115, 2018/02
no abstracts in English
Idomura, Yasuhiro; Ina, Takuya*; Mayumi, Akie; Yamada, Susumu; Matsumoto, Kazuya*; Asahi, Yuichi*; Imamura, Toshiyuki*
Proceedings of 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA 2017), p.7_1 - 7_8, 2017/11
A communication-avoiding generalized minimal residual (CA-GMRES) method is applied to the gyrokinetic toroidal five dimensional Eulerian code GT5D, and its performance is compared against the original code with a generalized conjugate residual (GCR) method on the JAEA ICEX (Haswell), the Plasma Simulator (FX100), and the Oakforest-PACS (KNL). The CA-GMRES method has higher arithmetic intensity than the GCR method, and thus, is suitable for future Exa-scale architectures with limited memory and network bandwidths. In the performance evaluation, it is shown that compared with the GCR solver, its computing kernels are accelerated by
, and the cost of data reduction communication is reduced from
to
of the total cost at 1,280 nodes.
Miyahara, Kaname; Ohara, Toshimasa*
Nihon Genshiryoku Gakkai-Shi ATOMO, 59(5), p.282 - 286, 2017/05
This review highlights JAEA and NIES's challenges for enhancing Fukushima environmental resilience based on carrying out multifaceted research working with many public and private sector organizations and academia.
Ohara, Toshimasa*; Miyahara, Kaname
Global Environmental Research (Internet), 20(1&2), p.3 - 13, 2017/03
Toward the environmental regeneration in Fukushima Prefecture and other areas after the Fukushima Daiichi Nuclear Power Station accidents, JAEA and NIES working with many public and private sector organizations and academia have carried out multifaceted research that will help to restore the environment of affected areas. These challenging efforts need to be further strengthened.
Miyahara, Kaname; McKinley, I. G.*; Saito, Kimiaki; Iijima, Kazuki; Hardie, S. M. L.*
Nuclear Engineering International, 60(736), p.12 - 14, 2015/11
Remediation work in Fukushima is based on a comprehensive technical knowledge base, which is translated into actions that enable the rapid return of evacuees but also provides a globally valuable resource for disaster planning and contaminated site remediation.
Inagaki, Daisuke*; Tsusaka, Kimikazu*; Aoyagi, Kazuhei; Nago, Makito*; Ijiri, Yuji*; Shigehiro, Michiko*
Proceedings of ITA-AITES World Tunnel Congress 2015 (WTC 2015)/41st General Assembly, 10 Pages, 2015/05
Sobajima, Makoto
Nihon Genshiryoku Gakkai-Shi, 46(2), p.94 - 98, 2004/02
Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent yeras, people's reliability to nuclear energy has significantly stryed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engagin in nuclear field. In order that nuclear enegry is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for ovecoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed.
Kishimoto, Yasuaki
Purazuma, Kaku Yugo Gakkai-Shi, 78(9), p.857 - 860, 2002/09
In order to understand the various phenomena related to the nonlocal transport and structure formation in the plasma, we reviw the topics in the field of (1)laser implosion plasma, (2)space plasma, and (3) magnetic fusion plasma, as a spatial series.
Sobajima, Makoto
JAERI-Review 2001-011, 90 Pages, 2001/03
no abstracts in English
Imamura, Toshiyuki; Takemiya, Hiroshi*; Koide, Hiroshi
JAERI-Data/Code 2000-007, p.114 - 0, 2000/03
no abstracts in English
Takemiya, Hiroshi*; Yamagishi, Nobuhiro*
JAERI-Data/Code 2000-006, p.172 - 0, 2000/02
no abstracts in English
Imamura, Toshiyuki; Koide, Hiroshi; Takemiya, Hiroshi*
JAERI-Data/Code 2000-002, p.75 - 0, 2000/02
no abstracts in English