検索対象:     
報告書番号:
※ 半角英数字
 年 ~ 
 年
検索結果: 2 件中 1件目~2件目を表示
  • 1

発表形式

Initialising ...

選択項目を絞り込む

掲載資料名

Initialising ...

発表会議名

Initialising ...

筆頭著者名

Initialising ...

キーワード

Initialising ...

使用言語

Initialising ...

発行年

Initialising ...

開催年

Initialising ...

選択した検索結果をダウンロード

論文

Computational fluid dynamics analysis for hydrogen deflagration tests at ENACCEF2 facility

Trianti, N.; 佐藤 允俊*; 杉山 智之; 丸山 結

Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 7 Pages, 2018/11

Simulation techniques have been developed to analyze the deflagration behavior of hydrogen generated during a hypothetical severe accident in nuclear power plants. The CFD analysis was carried out on the hydrogen deflagration experiment performed at the ENACCEF2 facility composed mainly of a vertical cylindrical tube filled with hydrogen-air mixture and nine annular obstacles were placed in the lower part of the tube. The simulation was carried out by the reactingFoam solver of OpenFOAM 3.0, an open source software for the CFD analysis. The RNG (Renormalization group) k-$$varepsilon$$ model was applied for turbulent flow. The interaction of the chemical reaction with the turbulent flow was considered using PaSR (Partial Stirred Reactor) model with 19 elementary reactions for the hydrogen combustion. The analysis result showed the characteristic of flame acceleration by the obstacle region was qualitatively reproduced even though has discrepancy with the experiment.

論文

Fluid dynamic analysis on hydrogen deflagration in vertical flow channel with annular obstacles

松本 俊慶; 佐藤 允俊; 杉山 智之; 丸山 結

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

Hydrogen combustion including deflagration and detonation could become a significant threat to the integrity of containment vessel or reactor building in a severe accident of nuclear power stations. In the present study, numerical analyses were carried out for the ENACCEF No.153 test to develop computational techniques to evaluate the flame acceleration phenomenon during the hydrogen deflagration. This experiment investigated flame propagation in the hydrogen-air premixed gas in a vertical channel with flow obstacles. The reactingFoam solver of the open source CFD code, OpenFOAM, was used for the present analysis. Nineteen elementary chemical reactions were considered for the overall process of the hydrogen combustion. For a turbulent flow, renormalization group (RNG) k-e two-equation model was used in combination with wall functions. Three manners of nodalization were applied and its influences on the flame propagation acceleration were discussed.

2 件中 1件目~2件目を表示
  • 1