Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sakurai, Junya*; Torigata, Keisuke*; Matsunaga, Manabu*; Takanashi, Naoto*; Hibino, Shinya*; Kizu, Kenichi*; Morita, Akira*; Inomoto, Masahiro*; Shimohata, Nobuaki*; Toyota, Kodai; et al.
Tetsu To Hagane, 111(5), p.246 - 262, 2025/04
Aihara, Jun; Ueta, Shohei; Honda, Masaki*; Kasahara, Seiji; Okamoto, Koji*
JAEA-Research 2024-012, 98 Pages, 2025/02
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for the purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. In research project of Pu-burner HTGR carried out from fiscal year of 2014 to fiscal year of 2017, simulated CFPs were fabricated using Ce to simulate Pu. Moreover, simulated fuel compacts were fabricated using fabricated simulated CFPs. In this report, results of microstructural observation of CeO
-YSZ and ZrC layer at each fabrication step are reported.
Miura, Taito*; Miyamoto, Shintoro*; Maruyama, Ippei*; Aili, A.*; Sato, Takumi; Nagae, Yuji; Igarashi, Go*
Case Studies in Construction Materials, 21, p.e03571_1 - e03571_14, 2024/12
Times Cited Count:0 Percentile:0.00(Construction & Building Technology)Miyazawa, Takeshi; Uwaba, Tomoyuki; Yano, Yasuhide; Tanno, Takashi; Otsuka, Satoshi; Onizawa, Takashi; Ando, Masanori; Kaito, Takeji
JAEA-Technology 2024-009, 140 Pages, 2024/10
For the purpose of enhancing the reliability of fast reactor fuel designing using modified type 316 steel, the out-of-pile and in-pile mechanical data of modified type 316 steel cladding tubes and wrapper tubes were statistically analyzed with the knowledge on material science and engineering; the high-temperature strength equations of modified type 316 steel, which can be applied to high-dose neutron irradiation environment, were derived. The out-of-pile high-temperature tensile and creep data of modified type 316 steel cladding tubes and wrapper tubes were derived up to 900C, which is higher than the upper limit temperature of anticipated transient event of fast reactor. Using the extended database, the best-fit equation and the lower limit equation were derived for out-of-pile 0.2% proof strength, ultimate tensile strength and creep rupture strength while the best-fit equation and the upper and lower limit equations for creep strain. Furthermore, the degradation factors for tensile and creep strength, which will be produced by in-reactor environment (i.e., neutron irradiation in liquid sodium), were evaluated using the existing neutron irradiation data of modified type 316 steel, which were derived using the experimental fast reactor Joyo, the French proto-type fast reactor Phenix, the American experimental fast reactor FFTF. The derived equations were validated by the comparison with the experimental data.
Shimazaki, Yosuke; Jidaisho, Tatsuya; Ishii, Toshiaki; Inoi, Hiroyuki; Iigaki, Kazuhiko
JAEA-Technology 2024-005, 23 Pages, 2024/06
HTTR has newly assumed Beyond Design Basis Accident (BDBA) as part of conformity assessment with the new regulatory standards and has established measures to prevent the spread of BDBA. Among these measures, to prevent the spread of BDBA caused by cooling water leaks from spent fuel storage pool, the Oarai Research Institute's fire engine was selected as an equipment to prevent the spread of BDBA, and required performances such as pumping water performance were determined. After all required performances were confirmed by inspections, the fire engine passed the operator's pre-use inspection and contributed to the restart of the HTTR operations.
Taniguchi, Yoshinori; Mihara, Takeshi; Kakiuchi, Kazuo; Udagawa, Yutaka
Annals of Nuclear Energy, 195, p.110144_1 - 110144_11, 2024/01
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Hirota, Noriaki; Nakano, Hiroko; Fujita, Yoshitaka; Takeuchi, Tomoaki; Tsuchiya, Kunihiko; Demura, Masahiko*; Kobayashi, Yoshinao*
The IV International Scientific Forum "Nuclear Science and Technologies"; AIP Conference Proceedings 3020, p.030007_1 - 030007_6, 2024/01
Dynamic strain aging (DSA) and intergranular stress corrosion cracking (intragranular SCC) occur in high temperature pressurized water simulating a boiling water reactor environment due to changes in dissolved oxygen (DO) content, respectively. In order to clearly understand the difference between these phenomena, the mechanism of their occurrence was summarized. As a result, it was found that DSA due to intragranular cracking occurred in SUS304 stainless steel at low DO 1 ppb, while DSA was suppressed at DO 100 to 8500 ppb due to the formation of oxide films on the surface. On the other hand, when DO was increased to 20000 ppb, the film was peeled from the matrix, O element diffused to the grain boundary of the matrix, resulting in intergranular SCC. These results are indicated that the optimum DO concentration must be adjusted to suppress crack initiation due to DSA and intergranular SCC.
Mohamad, A. B.; Nemoto, Yoshiyuki; Furumoto, Kenichiro*; Okada, Yuji*; Sato, Daiki*
Corrosion Science, 224, p.111540_1 - 111540_15, 2023/11
Times Cited Count:5 Percentile:28.81(Materials Science, Multidisciplinary)Kamide, Hideki; Kawasaki, Nobuchika; Hayafune, Hiroki; Kubo, Shigenobu; Chikazawa, Yoshitaka; Maeda, Seiichiro; Sagayama, Yutaka; Nishihara, Tetsuo; Sumita, Junya; Shibata, Taiju; et al.
Jisedai Genshiro Ga Hiraku Atarashii Shijo; NSA/Commentaries, No.28, p.14 - 36, 2023/10
Developments of next generation nuclear reactors, e.g., Fast Reactor, and High Temperature Gas cooled Reactor, are in progress. They can contribute to markets of electricity and industrial heat utilization in the world including Japan. Here, current status of reactor developments in Japan and also situation in the world are summarized, especially for activities of Generation IV International Forum (GIF), developments of Fast Reactor and High Temperature Gas cooled Reactor in Japan, and SMR movements in the world.
Shimomura, Kenta; Yamashita, Takuya; Nagae, Yuji
JAEA-Data/Code 2022-012, 270 Pages, 2023/03
In a light water reactor, which is a commercial nuclear power plant, a severe accident such as loss of cooling function in the reactor pressure vessel (RPV) and exposure of fuel rods due to a drop in the water level in the reactor can occur when a trouble like loss of all AC power occurs. In the event of such a severe accident, the RPV may be damaged due to in-vessel conditions (temperature, molten materials, etc.) and leakage of radioactive materials from the reactor may occur. Verification and estimation of the process of RPV damage, molten fuel debris spillage and expansion, etc. during accident progression will provide important information for decommissioning work. Possible causes of RPV failure include failure due to loads and restraints applied to the RPV substructure (mechanical failure), failure due to the current eutectic state of low-melting metals and high-melting oxides with the RPV bottom members (failure due to inter-material reactions), and failure near the melting point of the structural members at the RPV bottom. Among the failure factors, mechanical failure is verified by numerical analysis (thermal hydraulics and structural analysis). When conducting such a numerical analysis, the heat transfer properties (thermal conductivity, specific heat, density) and material properties (thermal conductivity, Young's modulus, Poisson's ratio, tensile, creep) of the materials (zirconium, boron carbide, stainless steel, nickel-based alloy, low alloy steel, etc.) constituting the RPV and in-core structures to near the melting point are required to evaluate the creep failure of the RPV. In this document, we compiled data on the properties of base materials up to the melting point of each material constituting the RPV and in-core structures, based on published literature. In addition, because welds exist in the RPV and in-core structures, the data on welds are also included in this report, although they are limited.
Rizaal, M.; Nakajima, Kunihisa; Saito, Takumi*; Osaka, Masahiko; Okamoto, Koji*
ACS Omega (Internet), 7(33), p.29326 - 29336, 2022/08
Times Cited Count:4 Percentile:31.35(Chemistry, Multidisciplinary)Ueta, Shohei; Sasaki, Koei; Arita, Yuji*
Nihon Genshiryoku Gakkai-Shi ATOMO, 63(8), p.615 - 620, 2021/08
no abstracts in English
Takeda, Tetsuaki*; Inagaki, Yoshiyuki; Aihara, Jun; Aoki, Takeshi; Fujiwara, Yusuke; Fukaya, Yuji; Goto, Minoru; Ho, H. Q.; Iigaki, Kazuhiko; Imai, Yoshiyuki; et al.
High Temperature Gas-Cooled Reactors; JSME Series in Thermal and Nuclear Power Generation, Vol.5, 464 Pages, 2021/02
As a general overview of the research and development of a High Temperature Gas-cooled Reactor (HTGR) in JAEA, this book describes the achievements by the High Temperature Engineering Test Reactor (HTTR) on the designs, key component technologies such as fuel, reactor internals, high temperature components, etc., and operational experience such as rise-to-power tests, high temperature operation at 950C, safety demonstration tests, etc. In addition, based on the knowledge of the HTTR, the development of designs and component technologies such as high performance fuel, helium gas turbine and hydrogen production by IS process for commercial HTGRs are described. These results are very useful for the future development of HTGRs. This book is published as one of a series of technical books on fossil fuel and nuclear energy systems by the Power Energy Systems Division of the Japan Society of Mechanical Engineers.
Saito, Hiroyuki*; Machida, Akihiko*; Hattori, Takanori; Sano, Asami; Funakoshi, Kenichi*; Sato, Toyoto*; Orimo, Shinichi*; Aoki, Katsutoshi*
Physica B; Condensed Matter, 587, p.412153_1 - 412153_6, 2020/06
Times Cited Count:5 Percentile:26.04(Physics, Condensed Matter)The site occupancy of deuterium (D) atoms in face-centered-cubic nickel (fcc Ni) was measured along a cooling path from 1073 to 300 K at an initial pressure of 3.36 GPa via in situ neutron powder diffraction. Deuterium atoms predominantly occupy the octahedral (O) sites and slightly occupy the tetrahedral (T) sites of the fcc metal lattice. The O-site occupancy increases from 0.4 to 0.85 as the temperature is lowered from 1073 to 300 K. Meanwhile, the T-site occupancy remains c.a. 0.02. The temperature-independent behavior of the T-site occupancy is unusual, and its process is not yet understood. From the linear relation between the expanded lattice volume and D content, a D-induced volume expansion of 2.09(13) atom was obtained. This value is in agreement with the values of 2.14-2.2
atom previously reported for Ni and Ni
Fe
alloy.
Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.
Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02
Times Cited Count:1 Percentile:9.26(Nuclear Science & Technology)The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.
Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio
JAEA-Data/Code 2019-018, 22 Pages, 2020/01
Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO (PuO
-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.
Taniguchi, Yoshinori; Udagawa, Yutaka; Mihara, Takeshi; Amaya, Masaki; Kakiuchi, Kazuo
Proceedings of International Nuclear Fuel Cycle Conference / Light Water Reactor Fuel Performance Conference (Global/Top Fuel 2019) (USB Flash Drive), p.551 - 558, 2019/09
Ogawa, Masuro*
JAEA-Technology 2019-010, 22 Pages, 2019/07
Transition phenomena from laminar to turbulent flow are roughly classified into three categories. Circular pipe flow of the third category is linearly stable against any small disturbance, despite that flow actually transitions and transitional flow exhibits intermittency. These are among major challenges that are yet to be resolved in fluid dynamics. Thus, author proposes hypothesis as follows; "Flow in a circular pipe transitions from laminar flow because of vortices released from separation bubble forming in vicinity of inlet of pipe, and transitional flow becomes intermittent because vortex-shedding is intermittent." Present hypothesis can easily explain why linear stability theory has not been able to predict transition in circular pipe flow, why circular pipe flow actually transitions, why transitional flow actually exhibits intermittency even due to small disturbance, and why numerical analysis has not been able to predict intermittency of transitional flow in circular pipe.
Nishimura, Akihiko; Furusawa, Akinori; Takenaka, Yusuke*
AIP Conference Proceedings 2033, p.080002_1 - 080002_5, 2018/11
Times Cited Count:1 Percentile:49.77(Green & Sustainable Science & Technology)We developed a cpmpact laser maintenance device in order to access a 23 mm diameter for heat exchanger tubes of nuclear power plants. A laser instrumentation device was desighned and assembled to measure the corrosion depth at the inlet of heat exchanger tubes. This device can be applied for heat exchanger tubes in CSP where erosion or cracking might be caused by repetitive thermal induced stress.
Yamamoto, Masahiro; Sato, Tomonori; Igarashi, Takahiro; Ueno, Fumiyoshi; Soma, Yasutaka
Proceedings of European Corrosion Congress 2017 (EUROCORR 2017) and 20th ICC & Process Safety Congress 2017 (USB Flash Drive), 6 Pages, 2018/09
The authors have studied the differences between outer surface and the crevice-like portion of SUS316L in high pressurized and high temperature water containing dissolved oxygen. We have already introduced that changes in the characteristics of corrosion products along the crevice directions and gap width. It is suggested that the environmental conditions are different with the features of crevice from these results. In this report, we introduce the changes in oxide films with crevice gaps and comparison with the numerical simulation data utilizing of FEM calculation.